精英家教网 > 初中数学 > 题目详情
已知:反比例函数y=-
6
x

(1)若将反比例函数y=-
6
x
的图象绕原点O旋转90°,求所得到的双曲线C的解析式并画图;
(2)双曲线C上是否存在到原点O距离为
13
的点P?若存在,求出点P的坐标.
分析:(1)建立网格平面直角坐标系,然后利用描点法作出反比例函数y=-
6
x
的图象,然后找出绕点O旋转90°后的对应点,再描点连线作出函数图象即可;
(2)根据函数解析式设出点P的坐标为(a,
6
a
),然后利用勾股定理列式进行计算即可得解.
解答:解:(1)建立平面直角坐标系如图,如图所示,红色的双曲线即为双曲线C,
反比例函数y=-
6
x
上的点(-2,3)绕点O顺时针旋转90°后对应的点为(3,2),
所以,双曲线C的解析式为y=
6
x


(2)设点P坐标为(a,
6
a
),
则a2+(
6
a
2=
13
2
整理得,a4-13a2+36=0,
解得a2=4或a2=9,
解得a1=2,a2=-2,a3=3,a4=-3,
所以
6
2
=3,
6
-2
=-3,
6
3
=2,
6
-3
=2,
所以点P的坐标为(2,3)或(-2,-3)或(3,2)或(-3,-2).
点评:本题考查了利用旋转变换作图,反比例函数图象,以及反比例函数图象上点的坐标特征,作出网格平面直角坐标系是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:反比例函数的图象与一次函数的图象在第一象限交于点M(1,3),且一次函数的图象与y轴交点的纵坐标是2.
求:(1)这两个函数的解析式;
(2)在第一象限内,当一次函数值小于反比例函数值时,x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,反比例函数y=
12x
和一次函数y=kx-7都经过P(m,2),求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•昌平区二模)如图,已知:反比例函数y=
kx
(x<0)的图象经过点A(-2,4)、B(m,2),过点A作AF⊥x轴于点F,过点B作BE⊥y轴于点E,交AF于点C,连接OA.
(1)求反比例函数的解析式及m的值;
(2)若直线l过点O且平分△AFO的面积,求直线l的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是
y=-
1
x
(答案不唯一)
y=-
1
x
(答案不唯一)
(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,反比例函数y=
-2
x
的图象上有两点A(x1,y1),B(x2,y2),则y1-y2的值是(  )

查看答案和解析>>

同步练习册答案