精英家教网 > 初中数学 > 题目详情

【题目】如图所示,∠E∠F90°∠B∠CAEAF.有以下结论:①EMFN②CDDN③∠FAN∠EAM④△ACN≌△ABM.其中正确的有( ).

A. 1B. 2C. 3D. 4

【答案】C

【解析】试题分析:根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.

∵∠E=∠F=90°∠B=∠CAE=AF

∴△AEB≌△AFC;(AAS

∴∠FAM=∠EAN

∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故正确)

∵∠E=∠F=90°AE=AF

∴△EAM≌△FAN;(ASA

∴EM=FN;(故正确)

△AEB≌△AFC知:∠B=∠CAC=AB

∵∠CAB=∠BAC

∴△ACN≌△ABM;(故正确)

由于条件不足,无法证得②CD=DN;故正确的结论有:①③④

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)如图1,△ABC中, ,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为

(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求 的度数;
③若 ,则 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE90°,ADAE

1)如果ABAC,∠BAC90°.①当点D在线段BC上时,如图1,线段CEBD的位置关系为___________,数量关系为___________

②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.

2)如图3,如果ABAC,∠BAC90°,点D在线段BC上运动。探究:当∠ACB多少度时,CEBC?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸上的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣2,﹣1).

(1)把△ABC向左平移4格后得到△A1B1C1,画出△A1B 1C1并写出点A1的坐标;

(2)把△ABC绕点C按顺时针旋转90°后得到△A2B2C,画出△A2B2C的图形并写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,DAAB,EAAC,AB=AD,AC=AE,BECD相交于O,ABCD相交于P,则∠DOE的度数是____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点和点在数轴上对应的数分别为,且

1)求线段的长;

2)点在数轴上所对应的数为,且是方程的解,点在线段上,并且,请求出点在数轴上所对应的数;

3)在(2)的条件下,线段分别以个单位长度/秒和个单位长度/秒的速度同时向右运动,运动时间为秒,为线段的中点,为线段的中点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点GABC的平分线交CD于点F,交AD的延长线于点HAGBH交于点O,连接BE,下列结论错误的是(  )

A. BO=OH B. DF=CE C. DH=CG D. AB=AE

查看答案和解析>>

同步练习册答案