精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,E、F、G分别是AB、BC、AC边的中点,连接GE、GF,BD是AC边上的高,连接DE、DF.
(1)试判断四边形BFGE是怎样的特殊四边形?证明你的结论;
(2)求证:∠EDF=∠EGF.
分析:(1)四边形BFGE是平行四边形,由于E、F、G分别是AB、BC、AC边的中点,可以得到EG、GF是△ABC的中位线,然后利用中位线的性质即可证明四边形BFGE是平行四边形;
(2)由四边形BFGE是平行四边形可以得到∠ABC=∠EGF,又BD是AC边上的高,得到∠ADB=∠BDC=90°,又由E、F分别是AB、BC边的中点得到DE=BE=
1
2
AB、DF=BF=
1
2
BC,然后利用等腰三角形的性质即可证明题目的结论.
解答:解:(1)四边形BFGE是平行四边形,
∵E、F、G分别是AB、BC、AC边的中点,∴EG、GF是△ABC的中位线,
∴EG∥BC、GF∥AB,
∴四边形BFGE是平行四边形;
精英家教网
(2)∵四边形BFGE是平行四边形,
∴∠ABC=∠EGF(6分)
∵BD是AC边上的高,
∴∠ADB=∠BDC=90°
又∵E、F分别是AB、BC边的中点,
∴DE=BE=
1
2
AB,DF=BF=
1
2
BC(直角三角形斜边上的中线等于斜边的一半),
∴∠EDB=∠EBD,∠DBF=∠BDF(8分)
∴∠EDB+∠BDF=∠EBD+∠DBF,
∴∠EDF=∠ABC,
∴∠EDF=∠EGF(10分).
点评:此题主要考查了平行四边形的性质与判定、三角形的中位线的性质,解题时首先利用中位线的性质证明平行四边形,然后利用平行四边形的性质和直角三角形斜边中线的性质即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案