精英家教网 > 初中数学 > 题目详情

【题目】计算下列各题

(1)(﹣ab)3(5a2b﹣4ab2);

(2)(2x﹣1)(4x2+2x+1)

(3)求5x(2x+1)﹣(2x+3)(5x﹣1)的值,其中x=12.

【答案】(1)﹣5a5b4+4a4b5(2)8x3﹣1(3)﹣8x+3,﹣93

【解析】

1)原式利用积的乘方运算法则计算再利用单项式乘以多项式法则计算即可求出值

2)原式利用立方差公式计算即可求出值

3)原式利用单项式乘以多项式以及多项式乘以多项式法则计算去括号合并得到最简结果x的值代入计算即可求出值

1)原式= =﹣5a5b4+4a4b5

2)原式=8x31

3)原式=10x2+5x10x213x+3=﹣8x+3

x=12原式=﹣96+3=﹣93

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.若∠MBD=40°,则∠NCD的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】猜想与证明: 如图,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM,EM.

(1)试猜想写出DM与EM的数量关系,并证明你的结论. 拓展与延伸:
(2)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则(1)中的结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两根旗杆ACBD相距12m,某人从B点沿AB走向A,一定时间后他到达点M,此时他仰望旗杆的顶点CD,两次视线夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为0、5m/s,求这个人走了多长时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形ABC中,∠C90°AC6cmBC10cm,点PB点开始向C点运动速度是每秒1cm,设运动时间是t秒,

1)用含t的代数式来表示三角形ACP的面积.

2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点PBC上的什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法不正确的有(  )

①一个三角形至少有2个锐角;②在△ABC中,若∠A=2B=3C,则△ABC为直角三角形;③过n边形的一个顶点可作(n﹣3)条对角线;④n边形每增加一条边,则其内角和增加360°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

1B出发时与A相距______千米.

2B走了一段路后,自行车发生故障,进行修理,所用的时间是______小时.

3B出发后______小时与A相遇.

4)若B的自行车不发生故障,保持出发时的速度前进,______小时与A相遇,相遇点离B的出发点______千米.在图中表示出这个相遇点C

5)求出A行走的路程S与时间t的函数关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了方便居民低碳出行,聊城市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.
(1)求AD的长;
(2)求点E到AB的距离.(精确到0.1cm,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

同步练习册答案