精英家教网 > 初中数学 > 题目详情
15.求满足各边为整数的不等边三角形,且周长小于12.

分析 首先根据三角形的任意两边之和大于第三边以及三角形的周长,得到三角形的三边都不能大于4;再结合三角形的任意两边之差小于第三边进行分析出所有符合条件的整数.

解答 解:设a<b<c为三角形三边,
∵周长小于12,
∴a+b+c<12,即a+b+c≤11.
∵三角形两边之和大于第三边,
∴a+b>c,即a+b≥c+1,
∴11≥a+b+c≥c+1+c=2c+1,从而a<b<5,
∴其中的任何一边不能超过5;
∵根据两边之差小于第三边,
∴这样的三角形共有3,4,2;4,5,2两个.

点评 本题考查了三角形三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.下列说法中,不正确的是(  )
A.同位角相等,两直线平行
B.两直线平行,内错角相等
C.两直线被第三条直线所截,内错角相等
D.同旁内角互补,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.根据如图所示的程序计算函数值,若输入x的值为$\frac{3}{2}$,则输出的y值为$\frac{7}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.判断对错,并说明理由.
(1)∵a<b,∴a-b<b-b;
(2)∵a<b,∴$\frac{a}{2}<\frac{b}{2}$;
(3)∵a<b,∴-2a<-2b;
(4)∵-2a>0,∴a>0;
(5)若a<b,且c为有理数,则ac2≤bc2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.?ABCD的周长为36cm,AB=$\frac{5}{7}$BC,则较长边的长为$\frac{21}{2}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:如图1,点D是边长为2的等边△ABC边BC所在直线上的一动点,从点B向C方向运动,以AD为边向右侧作等边△ADE.
(1)连接CE,若点D在边BC上时,易知线段CE、CD、AC三者之间的关系为CE+CD=AC; 如图2当点D在C的右侧时,试探索线段CE、CD、AC三者之间的数量关系,并说明理由.
(2)如图1,当点D从B运动到C时,①直接写出△CDE周长的最小值.②直接写出点E的运动路径长.
(3)若将题目中条件“等边△ADE”改为“满足∠ADE=60°与等边△ABC的外角平分线交于点E”,么CE与BD还相等吗?如图3请作出判断并给出说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.以原点为圆心,1cm为半径的圆分别交x、y轴的正半轴于A、B两点,点P的坐标为(2,0).
(1)如图一,动点Q从点B处出发,沿圆周按顺时针方向匀速运动一周,设经过的时间为t秒,当t=1时,直线PQ恰好与⊙O第一次相切,连接OQ.求此时点Q的运动速度(结果保留).
(2)若点Q按照(1)中的方向和速度继续运动,
①当t为何值时,以O、P、Q为顶点的三角形是直角三角形;
②在①的条件下,如果直线PQ与⊙O相交,请求出直线PQ被⊙O所截的弦长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,∠ACB=90°,BC=$\sqrt{5}$,AC=2$\sqrt{5}$,
(1)若⊙C切AB于D,求⊙C半径及切线AD的长;
(2)直接写出⊙C与线段AB有两个公共点时半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:($\frac{1}{2}$)-1-$\sqrt{4}$+(1-$\sqrt{2}$)0-tan45°.

查看答案和解析>>

同步练习册答案