6£®Èçͼ£¬ÒÑÖªÉÈÐÎOABÓëÉÈÐÎOCDÊÇͬÐÄÔ²£¬OA=R£¬OC=r£®
£¨1£©ÈôR=8£¬r=6£¬Ô²ÐĽǶÈÊýΪ60¡ã£¬Ôò»·ÐÎÃæ»ýΪ$\frac{14¦Ð}{3}$£»
£¨2£©ÇëÔÚԭͼÖÐÒÔOΪԲÐÄ£¬ÒÔr¡äΪ°ë¾¶£¬½«»·ÐÎÃæ»ý·Ö³ÉÃæ»ýÏàµÈµÄÁ½¸ö»·ÐΣ¬£¨³ß¹æ×÷ͼ£©£¬²¢½«×÷ͼ²½Öè½øÐмòµ¥µÄÃèÊö£®
¹ýB×÷BE¡ÍOB£¬½ØÈ¡BE=OD£¬Á¬½ÓOE£¬×÷OEµÄ´¹Ö±Æ½·ÖÏߣ¬×÷ÒÔOEΪб±ßµÄµÈÑüÖ±½ÇÈý½ÇÐÎOEF£¬OFΪֱ½Ç±ß£¬ÔòOF=r¡¯£®

·ÖÎö £¨1£©¸ù¾ÝÉÈÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨2£©¹ýB×÷OBµÄ´¹Ïß²¢½ØÈ¡BE=OD£¬ÔÙ×÷OEµÄ´¹Ö±Æ½·ÖÏߣ¬OFΪֱ½Ç±ßµÄµÈÑüÖ±½ÇÈý½ÇÐÎOEF£¬ÓÚÊǵõ½OF¼´ÎªËùÇó£®

½â´ð ½â£º£¨1£©»·ÐÎÃæ»ý=SÉÈÐÎAOB-SÉÈÐÎCOD=$\frac{60•¦Ð¡Á{8}^{2}}{360}$-$\frac{60•¦Ð¡Á{6}^{2}}{360}$=$\frac{14¦Ð}{3}$£¬
¹Ê´ð°¸Îª£º$\frac{14¦Ð}{3}$£»

£¨2£©ÈçͼËùʾ£¬
×÷·¨£º¹ýB×÷BE¡ÍOB£¬½ØÈ¡BE=OD£¬Á¬½ÓOE£¬×÷OEµÄ´¹Ö±Æ½·ÖÏߣ¬×÷ÒÔOEΪб±ßµÄµÈÑüÖ±½ÇÈý½ÇÐÎOEF£¬OFΪֱ½Ç±ß£¬ÔòOF=r¡ä£®

µãÆÀ ±¾Ì⿼²éÁËÉÈÐεÄÃæ»ý¹«Ê½£¬¸´ÔÓ×÷ͼ£¬Êì¼ÇÉÈÐεÄÃæ»ý¹«Ê½ÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-5x+k=0ÓÐʵÊý¸ù£®Ôòk¿ÉÈ¡µÄ×î´óÕûÊýΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¾ÝijÍøվͳ¼Æ£¬È«¹úÿÄêÀË·ÑʳÎï×ÜÁ¿Ô¼Îª50100000000ǧ¿Ë£¬½«50100000000ÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®5.01¡Á1010B£®5.01¡Á109C£®50.1¡Á109D£®0.501¡Á1010

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚ-2£¬¦Ð£¬3£¬$\sqrt{6}$ÕâËĸöÊýÖУ¬×î´óµÄÊýÊÇ£¨¡¡¡¡£©
A£®-2B£®¦ÐC£®3D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÈçͼËùʾ£¬ÔòÏÂÁÐ˵·¨¢Ùac£¼0£»¢Ú2a+b£¼0£»¢Ûµ±x=1ʱ£¬a+b+c£¾0£»¢Üµ±x=-1ʱ£¬a-b+c£¾0£»¢Ý¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®ÄãÈÏΪÆäÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º4£¨x-3£©£¨x+2£©-£¨2x+3£©£¨2x-3£©£¬ÆäÖÐx=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¼ÆË㣺
£¨1£©£¨2$\sqrt{48}$-$\sqrt{75}$+3$\sqrt{12}$£©+$\sqrt{3}$
£¨2£©£¨$\sqrt{3}$-$\sqrt{2}$£©2£¨5+2$\sqrt{6}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Çó²»µÈʽ×é$\left\{\begin{array}{l}{2x+2£¾0}\\{-x+1¡Ý0}\end{array}\right.$µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖª·´±ÈÀýº¯Êýy1=$\frac{k}{x}$µÄͼÏóÓëÒ»´Îº¯Êýy2=ax+bµÄͼÏó½»ÓÚµãA£¨1£¬4£©ºÍµãB£¨m£¬-2£©£®
£¨1£©Çó·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ¹Øϵʽ£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£»
£¨3£©¹Û²ìͼÏó£¬Ð´³öʹµÃy1¡Üy2³ÉÁ¢µÄ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸