【题目】已知关于x的一元二次方程x2﹣2(m+1)x+m2+2=0
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=10,求实数m的值.
【答案】(1)m≥(2)实数m的值为1.
【解析】试题分析:(1)根据方程的系数结合根的判别式即可得出关于m的一元一次不等式,解之即可得出结论;
(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1x2=m2+2,结合x12+x22=10即可得出关于m的一元二次方程,解之即可得出m的值,再结合(1)的结论即可得出结论.
试题解析:(1)∵方程x2﹣2(m+1)x+m2+2=0有实数根,
∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,
解得:m≥.
(2)∵方程x2﹣2(m+1)x+m2+2=0的两实数根分别为x1、x2,
∴x1+x2=2(m+1),x1x2=m2+2,
∴x12+x22=(x1+x2)2﹣2x1x2=[2(m+1)]2﹣2(m2+2)=2m2+8m=10,
解得:m1=﹣5(舍去),m2=1.
∴实数m的值为1.
科目:初中数学 来源: 题型:
【题目】甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为﹣7,﹣1,3,乙袋中的三张卡片上所标的数值分别为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第二象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PA,PB,AB,已知∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F,
①请你猜想写出FE与FD之间的数量关系,不用说明理由;
②判断∠AFC与∠B的数量关系,请说明理由.
(2)如图2,在△ABC中,如果∠ACB不是直角,而(1)中其他条件不变,请问你在(1)中所得FE与FD之间的数量关系是否依然成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店出售一种商品,其原价为元,现有两种调价方案:一种是先提价,在此基础上又降价;另一种是先降价, 在此基础上又提价.
1)用这两种方案调价的结果是否一样?
2)两种调价方案改为:一种是提价;另一种是先提价,在此基础上又提价,这两种调价方案结果是否一样?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,点D为AB边上一个动点,连接CD,以DA、DC为一组邻边作平行四边形ADCE,则对角线DE的最小值是( )
A.+B.1+C.4D.2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小文想用一张长方形白铁皮做一个长方体无盖盒子,她采取了如下图所示的一个方案(阴影部分是被剪掉的材料,形状为四个相同的正方形).
(1)这块白铁皮的总面积是多少?
(2)这个长方体盒子的表面积是多少?
(3)这个长方体盒子的体积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com