精英家教网 > 初中数学 > 题目详情

(1)问题探究

数学课上,李老师给出以下命题,要求加以证明.

如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.

同学们经过思考、讨论、交流,得到以下证明思路:

思路一 直接利用等腰三角形性质和三角形内角和定理…

思路二 延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…

思路三 以BC为直径作圆,利用圆的知识…

思路四…

请选择一种方法写出完整的证明过程;

(2)结论应用

李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:

①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙O的切线;

②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.

 

 

【答案】

(1)问题研究,证明见解析

(2)①证明见解析

【解析】

试题分析:(1)应用思路一:根据条件可以得出BM=CM=MA,由等腰三角形的性质就可以得出∠1=∠B,∠2=∠C,由三角形内角和定理就可以求出结论。

(2)①连接OD,CD,由圆的性质就可以得出AO=OD=OC=a,再由条件就可以得出△ODC是等边三角形,由外角与内角的关系就可以求出∠BDC=30°,从而得出∠ODB=90°而得出结论。

②运用(1)的结论可以得出∠ADB=∠ACE=90°,从而有△ADB∽△AEC,由相似的性质可以得出△ADE∽△ABC,由相似三角形的面积之比等于相似比平方,最后由锐角三角形函数值就可以求出结论。 

解:(1)问题研究,应用思路一:

∵M为BC的中点,∴BM=CM=BC。

∵MA=BC,∴BM=CM=MA。

∴∠1=∠B,∠2=∠C。

∵∠1+∠B+∠2+∠C=180°,∴2∠1+2∠2=180°。

∴∠1+∠2=90°,即∠BAC=90°。

(2)①证明:连接OD,CD,

∵∠DAB=30°,OA=a,

∴AO=OD=OC=a,∠BOD=2∠A=60°。

∴△ODC是等边三角形。

∴CD=OC=a,∠DCO=∠CDO=60°。

∵OB=2a,∴BC=a。∴BC=DC。∴∠B=∠BDC。

∴2∠BDC=60°。∴∠BDC=30°。∴∠BDO=∠BDC+∠CDO=90°。

∵OD是⊙O的半径,∴直线BD是⊙O的切线。

②∵M为BC的中点,BD⊥AC于D,∴DM=BC。

∵EM=DM,∴EM=BC。∴∠BEC=90°。∴∠ADB=∠ACE=90°。

∵∠A=∠A,∴△ADB∽△AEC。

。∴

∵∠A=∠A,∴△ADE∽△ABC。∴

∵cos∠A=,且∠A=60°,∴。∴

∴△ADE与△ABC面积的比值为

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、在一次数学测试中,各种能力所占分值如下:若把表中各种能力分值按比例绘成扇形统计图,则表示运算能力的扇形的圆心角应是
90°
度.
能力 运算 数据
处理
空间
想象
逻辑
思维
解决实际问题 探究
分值 25 15 10 20 20 10

查看答案和解析>>

科目:初中数学 来源: 题型:

我们都知道,在等腰三角形中.有等边对等角(或等角对等边),那么在不等腰三角形中边与角的大小关系又是怎样的呢?让我们来探究一下.
如图1,在△ABC中,已知AB>AC,猜想∠B与∠C的大小关系,并证明你的结论;
证明:猜想∠C>∠B,对于这个猜想我们可以这样来证明:
在AB上截取AD=AC,连接CD,
∵AB>AC,∴点D必在∠BCA的内部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一个外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究过程是研究图形中不等量关系证明的一种方法,将不等的线段转化为相等的线段,由此解决问题,体现了数学的转化的思想方法.请你仿照类比上述方法,解决下面问题:
(1)如图2,在△ABC中,已知AC>BC,猜想∠B与∠A的大小关系,并证明你的结论;
(2)如图3,△ABC中,已知∠C>∠B,猜想AB与AC大小关系,并证明你的结论;
(3)根据前面得到的结果,请你总结出三角形中边、角不等关系的一般性结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究问题
(1)方法感悟:
一班同学到野外上数学活动课,为测量池塘两端A、B的距离,设计了如下方案:
方案(Ⅰ)如图1,先在平地上取一个可直接到达A、B的点C,连接AC、BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;感悟解题方法,并完成下列填空:
解:在如图所示的两个三角形△DEC和△ABC中:DC=AC,∠
ACB
ACB
=∠
DCE
DCE
(对顶角相等),EC=BC,∴△DEC≌△ABC
(SAS)
(SAS)
,∴DE=AB(全等三角形对应边相等),即DE的距离即为AB的长.
(2)方法迁移:
方案(Ⅱ)如图2,先过B点作AB的垂线BF,再在BF上取C、D两点使BC=CD,接着过D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.请你说明理由.  
(3)问题拓展:
方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是
作∠ABC=∠EDC=90°
作∠ABC=∠EDC=90°
;若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
成立
成立

查看答案和解析>>

科目:初中数学 来源: 题型:

在一次数学探究活动中,小强用一条直线把平行四边形ABCD分割成面积相等的两个部分.

(1)根据小强的分割方法,你认为把平行四边形分割成面积相等的两个部分的直线有
无数
无数
 条.
(2)请在图1中的三个平行四边形中分别画出满足小强分割方法的不同位置的一条直线.
(3)由上述的思考,你能解决下面的问题吗?
有一位老人担心自己百年以后,两个儿子为争夺遗产而不和,想着如何把自己的家业分给两个儿子,其中有一块地是平行四边形,地里有一口井,井的位置不在地的中间(如图2).老人想:井不能分,两人共同使用,但地要分,老人想了很长时间,终于找到了分地方案.请你想一想老人分地方案可能是怎样的?(画在图上,并保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

在一次数学测试中,各种能力所占分值如下:若把表中各种能力分值按比例绘成扇形统计图,则表示运算能力的扇形的圆心角应是________度.
能力运算数据
处理
空间
想象
逻辑
思维
解决实际问题探究
分值251510202010

查看答案和解析>>

同步练习册答案