如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.
(1)试说明AE2+CF2的值是一个常数;
(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.
解:(1)由已知∠AEB=∠BFC=90°,AB=BC,
又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF。
∵在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,∠AEB=∠BFC,
∴△ABE≌△BCF(AAS)。
∴AE=BF。∴AE2+CF2=BF2+CF2=BC2=16为常数。
(2)设AP=x,则PD=4﹣x,
由已知∠DPM=∠PAE=∠ABP,∴△PDM∽△BAP。
∴,即。
∴。
∵<0,当x=2时,DM有最大值为1。
【解析】(1)由已知∠AEB=∠BFC=90°,AB=BC,结合∠ABE=∠BCF,证明△ABE≌△BCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数。
(2)设AP=x,则PD=4﹣x,由已知∠DPM=∠PAE=∠ABP,△PDM∽△BAP,列出关于x的二次函数,求出DM的最大值。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
10 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com