精英家教网 > 初中数学 > 题目详情
下列结论中,平行四边形不一定具备的是(  )
A.对角相等B.对角互补C.邻角互补D.内角和是360°
B.

试题分析:根据平行四边形的性质可知:B、C均是平行四边形的性质;根据多边形内角和定理可知:四边形内角和是360°,即D也正确;唯有B是平行四边形不一定具备的性质.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD、BEFG均为正方形.

(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).求EC的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据    ,易证△AFG≌    ,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在梯形ABCD中,AD∥BC,∠A=2∠B=4∠C,则∠D的度数为     °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图:一种电子游戏,电子屏幕上有一正方形ABCD,点P沿直线AB从右向左移动,当出现:点P与正方形四个顶点中的至少两个顶点构造成等腰三角形时,就会发出警报,则直线AB上会发出警报的点P有         个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为【   】
A.14B.15C.16D.17

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=       _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

同步练习册答案