精英家教网 > 初中数学 > 题目详情
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°- ∠FCM.
(1)连结MD
∵点E是DC的中点,ME⊥DC ∴MD=MC
又∵AD=CF,MF=MA ∴△AMD≌△FMC
∴∠MAD=∠MFC=120° ∵AD∥BC,∠ABC=90°
∴∠BAD=90°      ∴∠MAB=30°
在Rt△AMB中,∠MAB=30°
∴BM=AM.,即AM=2BM
(2)∵△AMD≌△FMC ∴∠ADM=∠FCM
∵AD∥BC        ∴∠ADM=∠CMD
∴∠CMD=∠FCM
∵MD=MC,ME⊥DC
∴∠DME==∠CME=∠CMD
∴∠CME=∠FCM
在在Rt△MBP中,∠MPB=90°-∠CME=90°- ∠FCM
(1)连接MD,由于点E是DC的中点,ME⊥DC,所以MD=MC,然后利用已知条件证明△AMD≌△FMC,根据全等三角形的性质可以推出∴∠MAD=∠MFC=120°,接着得到∠MAB=30°,再根据30°的角所对的直角边等于斜边的一半即可证明AM=2BM;
(2)利用(1)的结论得到∠ADM=∠FCM,又AD∥BC,所以∠ADM=∠CMD,由此得到∠CMD=∠FCM,再利用等腰三角形的性质即可得到∠CME=∠FCM,再根据已知条件即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=4,AB=1,F为AD的中点,则F到BC的距离是(   ).
A.1  B.2C.4   D.8

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知梯形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,

问题1:如图1,P为AB边上的一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ,DC的长能否相等,为什么?
问题2:如图2,若P为AB边上一点,以PD,PC为边作平行四边形PCQD,请问对角线PQ的长是否存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题3:若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.
问题4:如图3,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE、PB为边作平行四边形PBQE,请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若□ABCD的周长为100cm,两条对角线相交于点O,△AOB的周长比△BOC的周长多10cm,那么AB=      cm,BC=      cm.                                          

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD。
(1)如图1,当点P在线段OC上时,求证:OP=CD;
(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;
(3)如图2,抛物线y=-x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形,若存在,请求出t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE="3" cm,则AB的长为 (   )

A.3 cm     B.6 cm     C.9 cm    D.12 cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

 如图,分别延长□ABCD的边BADC到点EH,使得AECH,连接EH,分别交ADBC于点FG.求证:△BEG≌△DHF

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,E、F分别是AD和DB的中点,且EF=3cm,则这个菱形的周长为         cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积。

查看答案和解析>>

同步练习册答案