精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,AEBDCFBDEF分别为垂足.

1)求证:四边形AECF是平行四边形;

2)如果AE=3EF=4,求AFEC所在直线的距离.

【答案】(1)证明见解析;(2) AF、EC所在直线的距离是2.4.

【解析】

(1) 先证△ADE≌△CBF,据此得出AD=BC,结合AD∥BC即可得证.

(2)根据勾股定理和三角形面积的不同计算方法即可解答.

(1)∵AEBDCFBD,∴∠AED=∠CFB=90°,∴AECF,在ABCD中,∵ADBC,∴∠ADE=∠CBF,又∵ADCB,∴△ADE≌△CBF(AAS),∴AECF,∴四边形AECF是平行四边形(其他证法参照给分);

(2)AECF中,AF∥EC,设AF、EC所在直线的距离为h.∵AEBD,∴∠AEF=90°,∴AF==5,∵SAECF=AE·EF=AF·h,∴h==2.4,∴AF、EC所在直线的距离是2.4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:y= x﹣3交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为( )

A.( ,﹣
B.( ,﹣
C.( ,﹣ )或( + ,﹣
D.( ,﹣ )或( +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是正方形ABCD的对角线BD上一点,PEBC于点E,PFCD于点F,连接EF,给出下列五个结论:AP=EF;②APEF;③△APD一定是等腰三角形;④∠PFE=BAP;⑤PD=EC,其中正确结论的序号是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,EBC的中点,点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动当点P停止运动时,点Q也随之停止运动当运动时间为______秒时,以点PQED为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红同学在做作业时,遇到这样一道几何题:

已知:ABCDEFA=110°,ACE=100°,过点EEHEF,垂足为E,交CDH点.

(1)依据题意,补全图形;

(2)求∠CEH的度数.

小明想了许久对于求∠CEH的度数没有思路,就去请教好朋友小丽,小丽给了他如图2所示的提示

请问小丽的提示中理由①是

提示中②是: 度;

提示中③是: 度;

提示中④是: ,理由⑤是

提示中⑥是 度;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是对角线BD上的一点,过点CCFDB,且CF=DE,连接AEBFEF

1)求证:△ADE≌△BCF

2)若∠ABE+BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】乘法公式的探究与应用:

1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分的面积是   

2)小颗将阴影部分接下来,重新拼成一个长方形,如图乙,则长方形的长是   ,宽是   ,面积是   (写成多项式乘法的形式).

3)比较甲乙两图阴影部分的面积,可以得到恒等式   

4)运用你所得到的公式计算:10.3×9.7

5)若49x2y2257xy5,则7x+y的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形内一点,若S四边形AEOH=3,S四边形BFOE=4,S四边形CGOF=5,则S四边形DHOG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一段抛物线y=﹣x(x﹣3)(0≤x≤3),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x 轴于点A2;将C2绕点A2旋转180°得C3 , 交x 轴于点A3;…如此进行下去,得到一条“波浪线”.若点P(37,m)在此“波浪线”上,则m的值为

查看答案和解析>>

同步练习册答案