【题目】在四边形ABCD中,∠B=∠C=90°,若AB=4,BC=4,CD=1,问:在BC上是否存在点P,使得AP⊥PD?若存在,求出BP的长;若不存在,请说明理由.
科目:初中数学 来源: 题型:
【题目】已知点P(x0,m),Q(1,n)在二次函数y=(x+a)(x﹣a﹣1)(a≠0)的图象上,且m<n下列结论:①该二次函数与x轴交于点(﹣a,0)和(a+1,0);②该二次函数的对称轴是x=; ③该二次函数的最小值是(a+2)2; ④0<x0<1.其中正确的是_____.(填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则∠BCD= °,cos∠MCN= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:三角形的角平分线是初中几何中一条非常重要的线段,它除了具有平分角、角平分线上的点到角两边的距离相等这些性质外,还具有以下的性质:
如图①,在△ABC中,AD平分∠BAC交BC于点D,则=.提示:过点C作CE∥AD交BA的延长线于点E.
请根据上面的提示,写出得到“”这一结论完整的证明过程.
结论应用:如图②,在Rt△ABC中,∠C=90°,AC=8,BC=15,AD平分∠BAC交BC于点D.请直接利用“问题探究”的结论,求线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴相交于,两点,顶点在第一象限,点在该抛物线上.
(1)若点坐标为.
①求与的函数关系式;
②已知两点,,当抛物线与线段没有交点时,求的取值范围;
(2)若点在该抛物线的曲线段上(不与点,重合),直线交轴于点,过点作轴于点,连接,.求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为(4,0)和(0,3),动点P从点A出发,以每秒2个长度单位的速度沿AO向O运动,在点P出发的同时,动直线EF从x轴出发,以每秒1个长度单位沿y轴方向向上平移,分别与y轴、线段AB交于EP、FP.设运动时间为ts(0<t≤2).
(1)在运动过程中,是否存在某一时刻t,使得△EOP与△AOB相似?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.
(2)若△PEF是等腰三角形,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,在矩形ABCD中,AB=8,BC=x(0<x≤8),点E在边CD上,且CE=CB,以AE为对角线作正方形AGEF.设正方形AGEF的面积y.
(1)当点F在矩形ABCD的边上时,x= .
(2)求y与x的函数关系式及y的取值范围.
(3)当矩形ABCD的一条边将正方形AGEF的面积分为1:3两部分时,直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线L:y=ax2+bx+c(a≠0)与x轴交于A、B两点.与y轴交于C点.且A(﹣1,0),OB=OC=3OA.
(1)求抛物线L的函数表达式;
(2)在抛物线L的对称轴上是否存在一点M,使△ACM周长最小?若存在,求出点M的坐标;若不存在,请说明理由.
(3)连接AC、BC,在抛物线L上是否存在一点N,使S△ABC=2S△OCN?若存在,求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块斜边长相等的等腰直角三角板按如图①摆放,斜边AB分别交CD,CE于M,N点.
(1)如果把图①中的△BCN绕点C逆时针旋转90°得到△ACF,连接FM,如图②,求证:△CMF≌△CMN;
(2)将△CED绕点C旋转,则:
①当点M,N在AB上(不与点A,B重合)时,线段AM,MN,NB之间有一个不变的关系式,请你写出这个关系式,并说明理由;
②当点M在AB上,点N在AB的延长线上(如图③)时,①中的关系式是否仍然成立?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com