精英家教网 > 初中数学 > 题目详情
如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
1
4
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.
(1)如图甲,连接PE、PB,设PC=n,
∵正方形CDEF的面积为1,
∴CD=CF=1,
根据圆和正方形的轴对称性知:OP=PC=n,
∴BC=2PC=2n,
∵而PB=PE,
∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1,
∴5n2=(n+1)2+1,
解得:n=1或n=-
1
2
(舍去),
∴BC=OC=2,
∴B点坐标为(2,2);

(2)证明:如图甲,由(1)知A(0,2),C(2,0),
∵A,C在抛物线上,
c=2
1
4
×4+2b+c=0

解得:
c=2
b=-
3
2

∴抛物线的解析式为:y=
1
4
x2-
3
2
x+2=
1
4
(x-3)2-
1
4

∴抛物线的对称轴为x=3,即EF所在直线,
∵C与G关于直线x=3对称,
∴CF=FG=1,
∴MF=
1
2
FG=
1
2

在Rt△PEF与Rt△EMF中,
∠EFM=∠EFP,
FM
EF
=
1
2
1
=
1
2
EF
PF
=
1
2

FM
EF
=
EF
PF

∴△PEF△EMF,
∴∠EPF=∠FEM,
∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°,
∴ME是⊙P的切线;

(3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,
则有AQ=A′Q,
∴△ACQ周长的最小值为AC+A′C的长,
∵A与A′关于直线x=3对称,
∴A(0,2),A′(6,2),
∴A′C=
(6-2)2+22
=2
5
,而AC=
22+22
=2
2

∴△ACQ周长的最小值为2
2
+2
5

②当Q点在F点上方时,S=S梯形ACFK-S△AKQ-S△CFQ=
1
2
×(3+1)×2-
1
2
×(2-t)×3-
1
2
×t×1=t+1,
同理,可得:当Q点在线段FN上时,S=1-t,
当Q点在N点下方时,S=t-1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知二次函数y=x2+bx+c的图象经过点(-1,0),(0,2),当y随x的增大而增大时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0)、E(5,0)两点,与y轴交于点B(0,5).
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;
(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某种电缆在空中架设时,两端挂起的电缆下垂都近似抛物线y=
1
100
x2的形状.今在一个坡度为1:5的斜坡上,俺水平距离间隔50米架设两固定电缆的位置离地面高度为20米的塔柱(如图),这种情况下在竖直方向上,下垂的电缆与地面的最近距离为(  )
A.12.75米B.13.75米C.14.75米D.17.75米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,小明把一张长为20cm,宽为10cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子.设剪去的正方形边长为x(cm),折成的长方体盒子的侧面积为y(cm2),底面积为S(cm2).
(1)求S与x之间的函数关系式,并求S=44(cm2)时x的值;(结果可保留根式)
(2)求y与x之间的函数关系式;在x的变化过程中,y会不会有最大值?x取何值时取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,桥拱是抛物线形,其函数解析式是y=-
1
4
x2,当水位线在AB位置时,水面宽为12米,这时水面离桥顶的高度h是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+bx-7的图象交x轴于A,B两点,交y轴于点D,点C为抛物线的顶点,且A,C两点的横坐标分别为1和4.
(1)求A,B两点的坐标;
(2)求二次函数的函数表达式;
(3)在(2)的抛物线上,是否存在点P,使得∠BAP=45°?若存在,求出点P的坐标及此时△ABP的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案