精英家教网 > 初中数学 > 题目详情
已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,
a
b
的值为(  )
分析:根据圆内接正三角形的性质以及正方形的性质分别用圆的半径表示出两图形面积,即可得出答案.
解答:解:连接OG,CO,过点O作OM⊥BC于点M,
设⊙O的半径为r,
∵△ABC是⊙O的内接正三角形,
∴∠OCM=30°,
∴OM=
1
2
CO=
1
2
r,CM=
3
2
r,
∴△ABC的高的长度为:
3
2
r,
BC=
3
r,
∴a=
1
2
×
3
2
3
r=
3
3
4
r2
设正方形DEFG的边长为:x,
则OF=
x
2

∴r2=x2+(
x
2
2
解得:x2=
4
5
r2
∴b=
4
5
r2
a
b
=
3
3
4
r2
4
5
r2
=
15
3
16

故选:D.
点评:此题主要考查了正多边形和圆的有关计算,根据圆内接正三角形的性质用圆的半径表示出三角形面积是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知△ABC是⊙O的内接三角形,且AB=AC=4
5
,BC=8,则⊙O的直径等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•五通桥区模拟)如图,已知△ABC是⊙O的内接三角形,AB=AC,AD=AE,AE的延长线与BC的延长线交于点F.
求证:(1)∠DAB=∠CAE;
(2)
AD
AC
=
AB
AF

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是
AB
的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°.求证:AC=
3
AP;
(2)如图②,若sin∠BPC=
24
25
,求tan∠PAB的值.

查看答案和解析>>

同步练习册答案