精英家教网 > 初中数学 > 题目详情

如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.

(1)判断AF与⊙O的位置关系并说明理由;

(2)若⊙O的半径为4,AF=3,求AC的长.

 

【答案】

(1)详见试题解析; (2)

【解析】

试题分析:(1)AF为为圆O的切线,理由为:练级OC,由PC为圆O的切线,利用切线的性质得到CP垂直于OC,由OF与BC平行,利用两直线平行内错角相等,同位角相等,分别得到两对角相等,根据OB=OC,利用等边对等角得到一对角相等,等量代换得到一对角相等,再由OC=OA,OF为公共边,利用SAS得出三角形AOF与三角形COF全等,由全等三角形的对应角相等及垂直定义得到AF垂直于OA,即可得证;

(2)由AF垂直于OA,在直角三角形AOF中,由OA与AF的长,利用勾股定理求出OF的长,而OA=OC,OF为角平分线,利用三线合一得到E为AC中点,OE垂直于AC,利用面积法求出AE的长,即可确定出AC的长.

试题解析:(1)AF为圆O的切线,理由为:

连接OC,

∵PC为圆O切线,

∴CP⊥OC,

∴∠OCP=90°,

∵OF∥BC,

∴∠AOF=∠B,∠COF=∠OCB,

∵OC=OB,

∴∠OCB=∠B,

∴∠AOF=∠COF,

∵在△AOF和△COF中,

∴△AOF≌△COF(SAS),

∴∠OAF=∠OCF=90°,

则AF为圆O的切线;

(2)∵△AOF≌△COF,

∴∠AOF=∠COF,

∵OA=OC,

∴E为AC中点,即AE=CE=AC,OE⊥AC,

∵OA⊥AF,

∴在Rt△AOF中,OA=4,AF=3,

根据勾股定理得:OF=5,

∵SAOF=OA•AF=•OF•AE,

∴AE=

则AC=2AE=

考点: 切线的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(辽宁铁岭卷)数学(解析版) 题型:解答题

如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.

(1)判断AF与⊙O的位置关系并说明理由;

(2)若⊙O的半径为4,AF=3,求AC的长.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源:2013年辽宁省铁岭市中考数学试卷(解析版) 题型:解答题

如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.

查看答案和解析>>

同步练习册答案