精英家教网 > 初中数学 > 题目详情
如图,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△DEF的边FE也在直线m上,边DF与边AC重合,且DF=EF.
(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)
(2)将△DEF沿直线m向左平移到图(2)的位置时,DE交AC于点G,连接AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
精英家教网
分析:(1)根据题意,BC=AC=DF=EF,且AC⊥BC,可知△ABC,△DEF为等腰直角三角形,得出结论;
(2)将△BCG绕点C顺时针旋转90°后能与△ACE重合.已知BC=AC,由(1)可知∠DEF=45°,可知△CEG为等腰直角三角形,则CG=CE,利用“SAS”证明△BCG≌△ACE,得出结论.
解答:解:(1)AB=AE,AB⊥AE;

(2)将△BCG绕点C顺时针旋转90°后能与△ACE重合(或将△ACE绕点C逆时针旋转90°后能与△BCG重合),
理由如下:
∵AC⊥BC,DF⊥EF,B、F、C、E共线,
∴∠ACB=∠ACE=∠DFE=90°,
又∵AC=BC,DF=EF,
∴∠DEF=∠D=45°,
在△CEG中,∵∠ACE=90°,
∴∠CGE+∠DEF=90°
∴∠CGE=∠DEF=45°,
∴CG=CE,
在△BCG和△ACE中,
BC=AC
∠ACB=∠ACE
CG=CE

∴△BCG≌△ACE(SAS),
∴将△BCG绕点C顺时针旋转90°后能与△ACE重合(或将△ACE绕点C逆时针旋转90°后能与△BCG重合).
点评:本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定与性质.关键是熟练运用等腰直角三角形的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN的周长最短. (写出作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC的边AC、AB上的中线BD、CE相交于点O,M、N分别是BO、CO的中点,顺次连接点D、E、M、N.
(1)求证:四边形DEMN是平行四边形;
(2)当△ABC满足什么条件时,四边形DEMN是矩形,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的边BC的垂直平分线MN交AC于D,若AC=6cm,AB=4cm,则△ADB的周长=
10
10
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:△ABC的边AB的垂直平分线分别交BC、AB于M、N,△ACM的周长为10cm,AN=4cm.则△ABC的周长是(  )cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC的边BC上的高为AD,且BC=9cm,AD=2cm,AB=6cm.
(1)画出AB边上的高CE;
(2)求CE的长.

查看答案和解析>>

同步练习册答案