精英家教网 > 初中数学 > 题目详情
已知点A,B分别是两条平行线m,n上任意两点,C是直线n上一点,且∠ABC=90°,点E在AC的延长线上,BC=kAB(k≠0).
(1)当k=1时,在图(1)中,作∠BEF=∠ABC,EF交直线m于点F.写出线段EF与EB的数量关系,并加以证明;

(2)若k≠1,如图(2),∠BEF=∠ABC,其它条件不变,探究线段EF与EB的数量关系,并说明理由.
(1) EF=EB;(2)EB=KEF

试题分析:(1)在直线m上截取AM=AB,连接ME,易证△MAE≌△BAE,则EM=EB,再根据等角对等边即可证明EM=EF,从而得到结果
(2)过点E作EM⊥m,可以证明四边形MENA为矩形,进而即可证明△MEF∽△NEB,根据相似三角形的对应边的比相等即可得到结果.
(1)在直线m上截取AM=AB,连接ME

BC=kAB,k=1,
∴BC=AB,
∠ABC=90°,
∴∠CAB=∠ACB=45°,
∵m∥n,
∴∠MAE=∠ACB=∠CAB=45°,
∠FAB=90°,
∵AE=AE,
∴△MAE≌△BAE,
∴EM=EB,∠AME=∠ABE,
∵∠BEF=∠ABC=90°,
∴∠FAB+∠BEF=180°,
∴∠ABE+∠EFA=180°,
又∵∠AME+∠EMF=180°,
∴∠EMF=∠EFA,
∴EM=EF,
∴EF=EB;
(2)过点E作EM⊥m,EN⊥AB,垂足为M,N,

∴∠EMF=∠ENA=90°,
∵m∥n,∠ABC=90°,
∴∠MAB=90°,
∴四边形MENA为矩形,
∴ME=NA,∠MEN=90°,
∵∠BEF=∠ABC=90°,
∴∠MEF=∠NEB,
∴△MEF∽△NEB,


在Rt△ANE和Rt△ABC中,
∴EB=KEF.
点评:本题知识点多,综合性强,难度较大,正确作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.

(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,请你补充一个你认为正确的条件,使                          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),一正方形纸板ABCD的边长为4,对角线AC、BD交于点O,一块等腰直角三角形的三角板的一个顶点处于点O处,两边分别与线段AB、AD交于点E、F,设BE=
(1)若三角板的直角顶点处于点O处,如图(2).判断三角形EOF的形状,并说明理由。

(2)在(1)的条件下,若三角形EOF的面积为S,求S关于x的函数关系式。
(3)若三角板的锐角顶点处于点O处,如图(3).

①若DF=,求关于的函数关系式,并写出自变量的取值范围;
②探究直线EF与正方形ABCD的内切圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(4分)如图,在△ABD和△AEC中,EAD上一点,若∠DAC =∠B,∠AEC =∠BDA. 求证:.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC与△DEF是位似图形,位似比为2︰3,若AB=6,那么DE=      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC是一个格点三角形.

(1)请你在图中画出格点△A1BC1, 使得△A1BC1∽△ABC,且△A1BC1与△ABC的相似比为2:1;
(2)写出A1C1两点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图, ΔABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F。

(1)求证:ΔABD≌ΔBCE.
(2)ΔAEF与ΔABE相似吗?请说明理由.
(3)成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC的顶点在格点上,且点A(-5,-1),点C(-1,-2).

(1)以原点O为旋转中心,将△ABC绕点O逆时针旋转90°得到△. 请在图中画出△,并写出点A的对称点的坐标;
(2)以原点O为位似中心,位似比为2,在第一象限内将△ABC放大,画出放大后的图形△.

查看答案和解析>>

同步练习册答案