精英家教网 > 初中数学 > 题目详情

.如图,在矩形ABCD中,AB=5,BC=12,⊙O1和⊙O2分别是△ABC和△ADC的内切圆,则O1O2      .

 

l

 

第21题图

 

第20题图

 

 

解析:∵矩形ABCD中,AB=5,BC=12;

∴AC=13,△ABC≌△CDA,则⊙O1和⊙O2的半径相等.

如图,过O1作AB、BC的垂线分别交AB、BC于N、E,过O2作BC、CD、AD的垂线分别交BC、CD、AD于F、G、H;

∵∠B=90°, ∴四边形O1NBE是正方形; 设圆的半径为r,根据切线长定理5-r+12-r=13,解得r=2, ∴BE=BN=2,

同理DG=HD=CF=2, ∴CG=FO2=3,EF=12-4=8;

过O1作O1M⊥FO2于M,则O1M=EF=8,FM=BN=2,

∴O2M=1, 在Rt△O1O2M中,O1O2==

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①,在Rt△ABC中,∠C=90°,边BC的长为20cm,边AC的长为hcm,在此三角形内有一个矩形CFED,点D,E,F分别在AC,AB,BC上,设AD的长为xcm,矩形CFED的面积为y(单位:cm2).
(1)当h等于30时,求y与x的函数关系式;(不要求写出自变量x的取值范围)
(2)在(1)的条件下,矩形CFED的面积能否为180cm2?请说明理由;
(3)若y与x的函数图象如图②所示,求此时h的值.
(参考公式:二次函数y=ax2+bx+c,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a
.)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,连接AC,如果O为△ABC的内心,过O作OE⊥AD于E,作OF⊥CD于F,则矩形OFDE的面积与矩形ABCD的面积的比值为(  )
A、
1
2
B、
2
3
C、
3
4
D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,在矩形DEFG中,GD=1,直角三角形ABC中,AC=3,BC=2,若△ABC绕直角边AB旋转所得圆锥的侧面积和矩形DEFG绕GD旋转所得圆柱的侧面积相等,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形OABC中,OA=3,OC=4.将矩形OABC沿对角线AC剪开,再把△ABC向左平移3个单位,得到△A1B1C1(如图②),设A1C1交y轴于点E,B1C1交AC轴于点F.求点E、F的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,点D是斜边AC上的中点,过点D作斜边AC的垂线,交CB的延长线于点E,将DE绕点D按逆时针方向旋转60°后得到线段DF,连接AF、EF.
(1)求∠CED的度数;
(2)证明:四边形ABEF是矩形.

查看答案和解析>>

同步练习册答案