精英家教网 > 初中数学 > 题目详情
4.(1)如图1,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC,求证:BC∥EF.
(2)某路口设立了交通路况显示牌(如图2).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况显示牌BC的高度.(结果保留根号)

分析 (1)根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.
(2)在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC-AB得解.

解答 解:(1)证明:∵AF=DC,
∴AC=DF,
又∵AB=DE,∠A=∠D,
∴△ACB≌△DEF,
∴∠ACB=∠DFE,
∴BC∥EF.

(2)∵在Rt△ADB中,∠BDA=45°,AB=3m,
∴DA=3m,
在Rt△ADC中,∠CDA=60°,
∴tan60°=$\frac{CA}{AD}$,
∴CA=3$\sqrt{3}$m
∴BC=CA-BA=(3$\sqrt{3}$-3)米.

点评 本题考查了解直角三角形的应用-仰角俯角,解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.计算:4sin60°-(π-1)0-(-$\frac{1}{2}$)-3+($\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知函数f(x)=$\sqrt{x-6}$,那么f(10)=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.某商品经过连续两次降价,销售单价由原来200元降到162元,设平均每次降价的百分率为x,根据题意可列方程为200(1-x)2=162.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,此时测得轮船乙在甲的东北方向,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,此时测得轮船乙在甲的北偏东32°,此时B处距离码头O多远?(结果保留一位小数)(参考数据:sin32°≈0.53,cos32°≈0.85,tan58°≈1.60,tan32°≈0.625)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.某班十位男同学在我校第一次体育中考模拟考试的“引体向上”的测试中,分别做了8、5、11、8、7、4、5、8、9、3个,则这组数据的众数是8个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.为了加快我省城乡公路建设,我省计划“十三五”期间高速公路运营里程达1000公里,进一步打造城乡快速连接通道,某地计划修建一条高速公路,需在小山东西两侧A,B之间开通一条隧道,工程技术人员乘坐热气球对小山两侧A、B之间的距离进行了测量,他们从A处乘坐热气球出发,由于受西风的影响,热气球以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.函数y=$\frac{\sqrt{x+4}}{x-2}$中自变量x的取值范围是x≥-4且x≠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知点a(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求两个坐标间y与x之间的函数关系式.
(2)在(1)的条件下,Y是否有最大值?若有,请求出最大值;若没有,请说明理由.
(3)如图2,若点B的坐标为(-1,1).在x轴上另取点E,则当点E在x轴上的什么位置时,△ABE的周长最小?求出此时点E的坐标.

查看答案和解析>>

同步练习册答案