精英家教网 > 初中数学 > 题目详情
(2002•福州)已知:二次函数y=x2+bx+c(b、c为常数).
(1)若二次函数的图象经过A(-2,-3)和B(2,5)两点,求此二次函数的解析式;
(2)若(1)中的二次函数的图象过点P(m+1,n2+4n),且m≠n,求m+n的值.
【答案】分析:(1)由于二次函数的图象经过A、B两点,可将它们的坐标代入二次函数的解析式中,即可求得待定系数的值;
(2)已知抛物线的图象经过P点,可将其坐标代入(1)得出的解析式中,即可求得m+n的值.
解答:解:(1)把A(-2,-3)和B(2,5)两点代入y=x2+bx+c得
解得
∴所求二次函数的解析式为y=x2+2x-3;
(2)∵二次函数图象过点P(m+l,n2+4n)
∴n2+4n=(m+l)2+2(m+l)-3
n2+4n=m2+4m
(n-m)(n+m+4)=0
∵m≠n,∴n+m+4=0
即m+n=-4.
点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程(组)的解等知识,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2002•福州)已知:二次函数y=x2+bx+c(b、c为常数).
(1)若二次函数的图象经过A(-2,-3)和B(2,5)两点,求此二次函数的解析式;
(2)若(1)中的二次函数的图象过点P(m+1,n2+4n),且m≠n,求m+n的值.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•福州)已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省福州市中考数学试卷(解析版) 题型:解答题

(2002•福州)已知:矩形ABCD在平面直角坐标系中,顶点A、B、D的坐标分别为A(0,0),B(m,0),D(0,4),其中m≠0.
(1)写出顶点C的坐标和矩形ABCD的中心P点的坐标(用含m的代数式表示);
(2)若一次函数y=kx-1的图象J把矩形ABCD分成面积相等的两部分,求此一次函数的解析式(用含m的代数式表示);
(3)在(2)的前提下,l又与半径为1的⊙M相切,且点M(0,1),求此时矩形ABCD的中心P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:填空题

(2002•福州)已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为    cm.

查看答案和解析>>

同步练习册答案