精英家教网 > 初中数学 > 题目详情
(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

【答案】分析:(1)本题可根据切线长定理得出PC平分∠ACO,然后根据垂径定理即可得出PC⊥AO.
(2)求直线AB的解析式,已知了直线AB上C点的坐标.再得出一点的坐标即可用待定系数法求出直线AB的解析式.以求A点为例,可在直角三角形PCO中,根据特殊角∠CPO(30°),以及半径的长,求出OP的长,然后可过A作x轴的垂线,用相同的方法求出A点的坐标.由此可求出直线AB的解析式.
(3)由于△PAC≌△POC,因此两三角形的面积相等,四边形POCA的面积实际是2倍的△POC的面积.由此可求出S与x的函数关系式.
(4)根据圆的对称性可知A、B两点到y轴的距离应该相等,因此△BOC的面积和△ACO的面积相等,(3)中得出△POC与△PAC的面积相等,因此S四边形POCA=S△AOB能得出的条件是△AOC和△POC的面积相等,由于两三角形同底,因此高相等即PA∥OC,因此四边形PACO是个矩形(实际是个正方形),由此可得出AC=OP=r,由此可求出P点的坐标.
解答:(1)证明:∵⊙C与x轴相切于原点O,点P在x轴上,
∴PO与⊙C相切于点O,
又∵PA切⊙C于点A,
∴PO=PA,PC平分∠APO,
∴PC⊥OA.

(2)解:∵△APO为等边三角形,
∴∠CPO=∠APO=×60°=30°,
又∵∠POC=90°,
∴PC=2OC=2×2=4;
在Rt△POC中由勾股定理可得PO=2
作AH⊥PO于H,在Rt△AHO中,OA=OP=2
∴OH=PO=
∴AH=3,
∴A(-,3),
又点C(0,2),
故利用待定系数法可求得直线AB的函数解析式为y=-x+2.

(3)解:S四边形POCA=2S△POC=2××(-x)×2=-2x,
即S=-2x(x<0).

 (4)解:存在这样的一点P,其坐标为(-2,0),
∵S△AOB=2S△AOC,S四边形POCA=2S△POC
∴S△AOC=S△POC
∴PA∥OC;
又∵∠POC=90°,
∴∠APO=90°,
∵∠PAC=∠POC=90°,
∴四边形POCA是矩形,
∴OP=AC=2,
∴P(-2,0).
点评:本题考查了切线的性质、垂径定理、切线长定理、等边三角形的性质、矩形的判定以及一次函数的应用等知识点,综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《三角形》(04)(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年辽宁省沈阳市中考数学试卷(解析版) 题型:解答题

(2001•沈阳)已知,如图,在直角坐标系中,以y轴上的点C为圆心,2为半径的圆与x轴相切于原点O,点P在x轴的负半轴上,PA切⊙C于点A,AB为⊙C的直径,PC交OA于点D.
(1)求证:PC⊥OA;
(2)若△APO为等边三角形,求直线AB的解析式;
(3)若点P在x轴的负半轴上运动,原题的其他条件不变,设点P的坐标为(x,0),四边形POCA的面积为S,求S与点P的横坐标x之间的函数关系式,并写出自变量的取值范围;
(4)当点P在x轴的负半轴上运动时,原题的其他条件不变,分析并判断是否存在这样的一点P,使S四边形POCA=S△AOB?若存在,请直接写出点P的坐标;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2001年辽宁省沈阳市中考数学试卷(解析版) 题型:选择题

(2001•沈阳)已知变量y和x成反比例,当x=3时,y=-6,那么当y=3时,x的值是( )
A.6
B.-6
C.9
D.-9

查看答案和解析>>

同步练习册答案