精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm长为半径的圆与直线BC的位置关系是_______.

 

【答案】

相切

【解析】

试题分析:根据等腰三角形的三线合一和勾股定理,求得圆心到直线的距离,即可判断解答.

如图,作AD⊥BC于D.

根据等腰三角形的三线合一,得BD=4,

∴圆心到直线的距离等于圆的半径,则直线和圆相切.

考点:本题考查的是直线与圆的位置关系,等腰三角形的性质

点评:设圆心到直线的距离为d,圆的半径为r,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案