精英家教网 > 初中数学 > 题目详情
15.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.80°B.90°C.100°D.130°

分析 延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决.

解答 解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.
∵∠ABC=∠ADC=90°,
∴A、A′关于BC对称,A、A″关于CD对称,
此时△AMN的周长最小,
∵BA=BA′,MB⊥AB,
∴MA=MA′,同理:NA=NA″,
∴∠A′=∠MAB,∠A″=∠NAD,
∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,
∴∠AMN+∠ANM=2(∠A′+∠A″),
∵∠BAD=130°,
∴∠A′+∠A″=180°-∠BAD=50°M
∴∠AMN+∠ANM=2×50°=100°.
故选C.

点评 本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江苏省句容市华阳片七年级下学期第一次月考数学试卷(解析版) 题型:判断题

在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P是平面内一动点(P与D,E不在同一直线上),设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在边BC上运动(不与点B和点C重合),如图(1)所示,则∠1+∠2=________

(用α的代数式表示).

(2)若点P在ABC的外部,如图(2)所示,则∠α,∠1,∠2之间有何关系?写出你的结论,并说明理由.

(3)当点P在边CB的延长线上运动时,试画出相应图形,标注有关字母与数字,并写出对应的∠α,∠1,∠2之间的关系式.(不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,A(-t,0)、B(0,t),其中t>0,点C在OA上一点,OD⊥BC于点D,且∠BCO=45°+∠COD.
(1)求证:BC平分∠ABO;
(2)求$\frac{BC-2OD}{CD}$的值;
(3)若点P为第三象限内一动点,且∠APO=135°,试问AP和BP是否存在某种确定的位置关系?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.比较大小:-$\frac{4}{5}$<-|-$\frac{3}{4}$|.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.一元二次方程x2-81=0的解是(  )
A.x=-9B.x=9C.x1=9,x2=-9D.x=81

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知如图1,二次函数y=ax2+4ax+$\frac{3}{4}$的图象交x轴于A、B两点(A在B的左侧),过A点的直线y=kx+3k(k$>\frac{1}{4}$)交该二次函数的图象于另一点C(x1,y1),交y轴于M.
(1)直接写出A点坐标,并求该二次函数的解析式;
(2)过点B作BD⊥AC交AC于D,若M(0,3$\sqrt{3}$)且点Q是线段DC上的一个动点,求出当△DBQ与△AOM相似时点Q的坐标;
(3)设P(-1,-2),图2中连CP交二次函数的图象于另一点E(x2,y2),连AE交y轴于N,请你探究OM•ON的值的变化情况,若变化,求其变化范围;若不变,求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算题
(1)($\frac{1}{8}$+1$\frac{1}{3}$-2.75)×(-24)+(-1)2016;     
(2)-12-[1$\frac{3}{7}$+(-12)÷6]2×(-1$\frac{3}{4}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知∠A为锐角,tan(75°-A)=1,则∠A的度数为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在一不透明的口袋中有4个为红球,3个篮球,他们除颜色不同外其它完全一样,现从中任摸一球,恰为红球的概率为$\frac{4}{7}$.

查看答案和解析>>

同步练习册答案