精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.

    (1)写出的值;

    (2)判断的形状,并说明理由;

(3)在线段上是否存在点,使?若存在,求出点的坐标;若不存在,说明理由.

 

【答案】

(1)(2)直角三角形,理由见解析(3)存在,

【解析】解:(1)的顶点坐标为D(-1,-4),

  ∴ .   …………………………………………2分

 (2)由(1)得.

  当时,. 解之,得 

 ∴ .

  又当时,

∴C点坐标为.………………………………4分

又抛物线顶点坐标,作抛物线的对称轴轴于点E, 轴于点.易知

中,

中,

中,

∴ △ACD是直角三角形.…………………………6分

(2)存在.作OM∥BC交AC于M,M点即为所求点.

由(2)知,为等腰直角三角形,

,得

. …………………………9分

点作于点,则

.

又点M在第三象限,所以.  …………………………12分

(1)由抛物线的顶点坐标特征可以求得的值;

(2)先由抛物线函数关系式求得点A、C、D的坐标,再根据勾股定理可以求出AC、AD、CD的长,因为,所以△ACD是直角三角形.

(3)由,根据对应边成比例可求出AM的长,过点作于点,根据勾股定理可求出AG、MG的长,再求得OG的长,从而得到点的坐标。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案