精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(30),其部分图象如图所示,下列结论:

4ac<b2

②方程ax2+bx+c=0的两个根是x1=-2 x2=3

3a+c=0

④当y>0时,x的取值范围是-1<x<3

⑤当x<0时,yx增大而增大

其中结论正确的个数是( )

A.4B.3C.2D.1

【答案】A

【解析】

利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(30),则可对②进行判断;由对称轴方程得到b=-2a,然后根据x=-1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.

∵抛物线与x轴有2个交点,

b2-4ac0,故①正确;

∵抛物线的对称轴为直线x=1

而点(-10)关于直线x=1的对称点的坐标为(30),

∴方程ax2+bx+c=0的两个根是x1=-1x2=3,故②错误;

x=-=1,即b=-2a

x=-1时,y=0,即a-b+c=0

a+2a+c=0,故③正确;

∵抛物线与x轴的两点坐标为(-10),(30),

∴当-1x3时,y0,故④正确;

∵抛物线的对称轴为直线x=1

∴当x1时,yx增大而增大,故⑤正确.

综上所述,正确的结论有①③④⑤,共4个.

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如下图,反比例函数>0)图象上一点A,连结OA,作AB轴于点B,作BCOA交反比例函数图象于点C,作CD轴于点D,若点A、点C横坐标分别为mn,则mn的值为_______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°AC=6BC=8.把△ABCAB边上的点D顺时针旋转90°得到△A′B′C′A′C′AB于点E.若AD=BE,则△A′DE的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年暑假,小丽爸爸的同事送给她爸爸一张北京故宫的门票,她和哥哥两人都很想去参观,可门票只有一张.读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字为1,2,3,5的四张牌给小丽,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小利哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌上的数字相加,如果和为偶数,和小丽去;如果和为奇数,则哥哥去.

(1)请用画树状图或列表的方法求小丽去北京故宫参观的概率;

(2)哥哥设计的游戏规则公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A3,0),B4,3)都是格点。将AOB绕点O顺时针旋转90°得到COD(点A,B的对应点分别为点C D)。

(1)作出△COD,并写出下列各点的坐标:C(   ),D(   );

(2)仅用无刻度的直尺找一格点E,使得EB⊥AB,请标明格点E的位置;

(3)仅用无刻度的直尺在OB上找一点F,使得∠OAF=45°(请标明辅助格点M的位置)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一个例题:

有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?

这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2

我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:

1)若AB1m,求此时窗户的透光面积?

2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x24(k1)x4k20有两个实数根x1x2

(1) 求k的取值范围

(2) 若x1x22|x1x2|=4,求k的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的ABE三个接触点,该球的大小就符合要求.图2是过球心OABE三点的截面示意图,求这种铁球的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90CDABBC=1.

(1)如果∠BCD=30,求AC

(2)如果tanBCD,求CD

查看答案和解析>>

同步练习册答案