精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴的负半轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)求A点坐标并求抛物线的解析式;
(3)若点P在x轴下方且在抛物线对称轴上的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
分析:(1)本题须根据二次函数的对称轴公式即可求出结果.
(2)本题须先求出C点的坐标,再根据BC两点关于对称轴x=
5
2
对称,求出B点的坐标,设A点坐标(m,0),求出m即可得出点A的坐标,最后代入即可求出抛物线解析式.
(3)本题须先根据题意画出图形,再分别根据图形求出相应的点P的坐标即可.
解答:解:(1)y=ax2-5ax+4,
对称轴:x=-
-5a
2a
=
5
2


(2)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y上,且AC=BC,
令x=0,y=4,可知C点坐标(0,4),
BC∥x轴,所以B点纵坐标也为4,
又∵BC两点关于对称轴x=
5
2
对称,
即:
xB+0
2
=
5
2

xB=5,
∴B点坐标(5,4).
A点在x轴上,设A点坐标(m,0),
AC=BC,即AC2=BC2
AC2=42+m2
BC=5,
∴42+m2=52
∴m=±3,
∴A点坐标(-3,0),
将A点坐标之一(-3,0)代入y=ax2-5ax+4,
0=9a+15a+4,
a=-
1
6

y=-
1
6
x2+
5
6
x+4;
将A点坐标是(3,0),则与A在x轴的负半轴矛盾,故舍去.
故函数关系式为:y=-
1
6
x2+
5
6
x+4.

(3)存在符合条件的点P共有3个.以下分三类情形探索.
设抛物线对称轴与x轴交于N,与CB交于M.
过点B作BQ⊥x轴于Q,
易得BQ=4,AQ=8,AN=5.5,BM=
5
2

①以AB为腰且顶角为角A的△PAB有1个:△P1AB.
∴AB2=AQ2+BQ2=82+42=80(8分)
在Rt△ANP1中,P1N=
AP12-AN2
=
AB2-AN2
=
80-(5.5)2
=
199
2

∴P1
5
2
,-
199
2
).(9分)
②以AB为腰且顶角为角B的△PAB有1个:△P2AB.
在Rt△BMP2中MP2=
B
P
2
2
-BM2
=
AB2-BM2

=
80-
25
4

=
295
2
,(10分)
∴P2=(
5
2
8-
295
2
).(11分)
③以AB为底,顶角为角P的△PAB有1个,即△P3AB.
画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.
过点P3作P3K垂直y轴,垂足为K,显然Rt△P3CK∽Rt△BAQ.
P3K
CK
=
BQ
AQ
=
1
2

∵P3K=2.5
∴CK=5于是OK=1,(13分)
∴P3(2.5,-1).
④以B为顶点时,交于x轴上方,求得P(
5
2
8+
295
2
)(舍去).
点评:本题主要考查了二次函数的应用,在解题时要注意综合运用数形结合思想,灵活应用二次函数的图象和性质是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案