分析 (1)利用销量×每件利润=总利润,进而求出即可;
(2)分别求出两种方案的最值进而比较得出答案.
解答 解:(1)根据题意得:w=(25+x-20)(250-10x)
即:w=-10x2+200x+1250或w=-10(x-10)2+2250(0≤x≤25)
(2)由(1)可知,抛物线对称轴是直线x=10,开口向下,对称轴左侧w随x的增大而增大,对称轴右侧w随x的增大而减小
方案A:根据题意得,x≤11,则0≤x≤11,
当x=10时,利润最大,最大利润为w=2250(元),
方案B:根据题意得,25+x-20≥16,
解得:x≥11
则11≤x≤25,
故当x=11时,利润最大,
最大利润为w=-10×112+200×11+1250=2240(元),
∵2250>2240,
∴综上所述,方案A最大利润更高.
点评 此题主要考查了二次函数的应用,根据题意利用函数性质得出最值是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com