精英家教网 > 初中数学 > 题目详情

如图,已知正方形ABCD中,E、F分别在AB、BC上,△DEF为正三角形,则∠AED=________°.

75
分析:根据正方形的性质和等边三角形的性质可证△DAE≌△DCF,根据全等三角形的性质可得AE=CF,从而得到△EBF是等腰直角三角形,再根据等腰直角三角形的性质和平角的定义即可求解.
解答:∵△DEF为正三角形,
∴DE=DF,∠DEF=60°,
∵四边形ABCD是正方形,
∴AD=CD=AB=BC,∠A=∠C=90°,
在Rt△DAE与Rt△DCF中,

∴Rt△DAE≌Rt△DCF(HL),
∴AE=CF,
∴BE=BF,
∴△EBF是等腰直角三角形,
∴∠BEF=45°,
∴∠AED=180°-60°-45°=75°.
故答案为:75.
点评:考查了正方形的性质和等边三角形的性质,全等三角形的判定与性质,等腰直角三角形的性质,解题的关键是得到△EBF是等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边AB与正方形AEFM的边AM在同一直线上,直线BE与DM交于点N.求证:BN⊥DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD,点E在BC边上,将△DCE绕某点G旋转得到△CBF,点F恰好在AB边上.
(1)请画出旋转中心G (保留画图痕迹),并连接GF,GE;
(2)若正方形的边长为2a,当CE=
a
a
时,S△FGE=S△FBE;当CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 时,S△FGE=3S△FBE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G,AG交BD于点F.
(1)试说明OE=OF;
(2)当AE=AB时,过点E作EH⊥BE交AD边于H.若该正方形的边长为1,求AH的长.

查看答案和解析>>

同步练习册答案