精英家教网 > 初中数学 > 题目详情

【题目】小虫从点出发在一条直线上来回爬行,假定向右爬行的路程记作正数,向左爬行的路程记作负数,爬行的各段路程(单位:)依次为:.

1)小虫在爬行过程中离点最远的距离是多少?

2)小虫爬到最后距点多远?

3)如果小虫爬行就奖励它一粒芝麻,那么小虫一共可得到多少粒芝麻?

【答案】1;(2;(350

【解析】

1)分别依次进行计算,根据绝对值的大小比较即可;(2)把所有的路程相加,然后根据有理数的加法运算法则进行计算即可;(3)根据绝对值的性质把所有路程相加;根据爬行就奖励即可得到答案;

解:

(1)(+5)+(-3)=2

2+(+9)=11

11+(-7)=4

4+(-6)=-2

-2+(+12)=10

10+(-8)=2

∴距离点A最远有11cm

(2)5+-3+9+-7+-6+12+(-8)=2

∴小虫爬到最后时离A2cm

(3) |+5|+|-3|+|+9|+|-7|+|-6|+|+12|+|-8|

=5+3+9+7+6+12+8

=50cm

50×1=50()

答:小虫共可以得到50粒芝麻.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式。请你观察下列儿种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格:

多面体

项点数(V)

面数(F)

棱数(F)

四面体

长方体

正八面体

正十二面体

你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.

2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是 20
3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两名同学做摸球游戏,他们把三个分别标有123的大小和形状完全相同的小球放在一个不透明的口袋中.

1)求从袋中随机摸出一球,标号是1的概率;

2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5,需2100元,若购进A种树苗4,B种树苗10,需3800元.

(1)求购进A、B两种树苗的单价;

(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励节约用水,某地推行阶梯式水价计费制,标准如下:每月用水不超过17立方米的按每立方米元计费,超过17立方米而未超过30立方米的部分按每立方米元计费,超过30立方米的部分按每立方米元计费,某户居民上月用水35立方米,应缴水费_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:

当n=2时,钉子板上所连不同线段的长度值只有1与所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;

当n=3时,钉子板上所连不同线段的长度值只有1, 2, 2五种,比n=2时增加了3种,即S=2+3=5.

(1)观察图形,填写下表:

钉子数(n×n)

S值

2×2

2

3×3

2+3

4×4

2+3+____

5×5

________

(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).

(3)对n×n的钉子板,写出用n表示S的代数式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光明中学组织全校1000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).

分组

频数

频率

50.560.5

10

a

60.570.5

b

70.580.5

0.2

80.590.5

52

0.26

90.5100.5

0.37

合计

c

1

请根据以上提供的信息,解答下列问题:

(1)直接写出频数分布表中a,b,c的值,补全频数分布直方图.

(2)上述学生成绩的中位数落在哪一组范围内?

(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1000名学生中约有多少名获奖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分∠ABCAEBD于点O,交BC于点EADBC,连接CD

(1)求证:AOEO

(2)若AEABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB=DOC=90°OE平分∠AOD,反向延长射线OEF.

1)∠AOD和∠BOC是否互补?说明理由;

2)射线OF是∠BOC的平分线吗?说明理由;

3)反向延长射线OA至点G,射线OG将∠COF分成了43的两个角,求∠AOD.

查看答案和解析>>

同步练习册答案