精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系xoy中,已知两点O1(3,0)、B(-2,0),⊙O1与x轴交于原点O和点A,E是y轴上的一个动点,设点E的坐标为(0,m).
(1)当点O1到直线BE的距离等于3时,求直线BE的解析式;
(2)当点E在y轴上移动时,直线BE与⊙O1有哪几种位置关系;直接写出每种位置关系时的m的取值范围;
(3)若在第(1)题中,设∠EBA=α,求sin2α-2sinα•cosα的值.
(1)由已知得BE是⊙O1的切线,
设切点为M,连接O1M,则O1M⊥BM,
∴O1M=3,BM=4,又OE⊥BO,
∴△BOE△BMO,
OE
O1M
=
OB
BM

m
3
=
2
4

∴m=
3
2

设此时直线BE的解析式是y=kx+m,
将B(-2,0)及m=
3
2
代入上式,解得k=
3
4

∴y=
3
4
x+
3
2

由圆的对称性可得:m=-
3
2
,直线BE也与⊙O1相切,
同理可得:y2=-
3
4
x-
3
2


(2)当m
3
2
或m<-
3
2
时,直线与圆相离,
当m=
3
2
或m=-
3
2
时,直线与圆相切,
-
3
2
<m<
3
2
时,直线与圆相交;

(3)当直线BE与⊙O1相切时,显然存在另一条直线BF也与⊙O1相切,
设直线BE、BF与⊙O1相切于点M、N,连接O1M、O1N,有O1M⊥BM,O1N⊥BN,由圆的对称性可知∠EBF=2∠EBO=2∠α,
sinα=
O1M
BO1
=
3
5

cosα=
BM
BO1
=
4
5

过E作EH⊥BF于H,在△BEF中,
由三角形等积性质得;EH•BF=EF•BO,
BF=BE=
5
2
,EF=2m=3,BO=2,
∴EH=
12
5

sin2α=sin∠EBF=
EH
BE
=
12
5
5
2
=
24
25

由此可得:sin2α-2sinα•cosα=
24
25
-
3
5
×
4
5
×2=0.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图所示,l1和l2分别表示一种白炽灯和一种节能灯的费用y(元)与照明时间x(小时)的函数关系图象,假设两种灯的使用寿命都是2000小时,照明效果一样.(费用=灯的售价+电费)
(1)根据图象分别求出l1,l2的函数关系式;
(2)当照明时间为多少时,两种灯的费用相等?
(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

药品研究所开发一种抗菌素新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象过点(2,-5)与(-3,5).
(1)求这个一次函数的解析式;
(2)在网格中建立坐标系,并画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b经过点A(0,1),B(-3,0),点P是这条直线上的一个动点,以P为圆心的圆与x轴相切于点C.
(1)求直线AB的解析式;
(2)设点P的横坐标为t,若⊙P与y轴相切,求t的值;
(3)是否存在点P,使⊙P与y轴两交点间的距离恰好等于2?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用一根20cm长的铁丝围成一个矩形,若矩形的一边长为xcm,另一边长为ycm.
(1)写出另一边长y与一边长x之间的函数关系式,并求出x的取值范围;
(2)在平面直角坐标系中画出这个函数的图象;
(3)将这个函数的图象向左平移3个单位长度后,请你求出平移后图象的函数表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数图象如图,写出它的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.
现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图1)、上周货运量折线统计图(如图2)等信息如下:
货运收费项目及收费标准表
(1)汽车的速度为______千米/时,火车的速度为______千米/时:
(2)设每天用汽车和火车运输的总费用分别为y(元)和y(元),分别求y、y与x的函数关系式(不必写出x的取值范围),当x为何值时,y>y(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系xoy中,一次函数y=
3
4
x+3
的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.
(1)分别求出点A′、B′的坐标;
(2)若直线A′B′与直线AB相交于点C,求S四边形OB?CB的值.

查看答案和解析>>

同步练习册答案