精英家教网 > 初中数学 > 题目详情
精英家教网正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则
AO
DO
=(  )
A、
1
3
B、
2
5
5
C、
2
3
D、
1
2
分析:由已知条件易证△ADE≌△BAF,从而进一步得△AOD∽△EAD.运用相似三角形的性质求解.
解答:解:根据题意,AE=BF,AD=AB,∠EAD=∠B=90°,
∴△ADE≌△BAF.
∴∠ADE=∠BAF,∠AED=∠BFA.
∵∠DAO+∠FAB=90°,∠FAB+∠BFA=90°,
∴∠DAO=∠BFA,精英家教网
∴∠DAO=∠AED.
∴△AOD∽△EAD.
所以
AO
DO
=
AE
AD
=
1
2

故选D.
点评:本题考查的是全等三角形的判定,正方形的性质以及相似三角形的性质的有关知识的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在正方形ABCD中,M为AD中点,N为CD中点,试求tan∠MBN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,画2个半径为a的四分之一圆,用代数式表示阴影部分的面积为
2a2-
1
2
πa2
2a2-
1
2
πa2
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=4,E在BC边上,BE=1,F是AC上一动点,则EF+BF的最小值是
5
5

查看答案和解析>>

同步练习册答案