精英家教网 > 初中数学 > 题目详情
13.一元二次方程(1+k)x2-2x+1=0有两个不相等的实数根,则k的取值范围是k<0且k≠-1.

分析 根据方程(1+k)x2-2x+1=0有两个不相等的实数根结合根的判别式以及二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.

解答 解:∵方程(1+k)x2-2x+1=0有两个不相等的实数根,
∴$\left\{\begin{array}{l}{1+k≠0}\\{△=(-2)^{2}-4(1+k)>0}\end{array}\right.$,
解得:k<0且k≠-1.
故答案为:k<0且k≠-1.

点评 本题考查了根的判别式以及解一元一次不等式组,根据方程有两个不相等的实数根结合二次项系数非0得出关于k的一元一次不等式组是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图由“?”拼出的一列形如正方形的图案,每条边上(包括两个顶点)有n(n>1)个“?”,每个图形“?”的总数是S:

通过观察规律可以推断出:当n=8时,S=28.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算与化简:
(1)$\frac{3}{4}$a2b3•(-$\frac{8}{9}$abc)           
(2)(-2ab22•(3a2b-2ab-1)
(3)(2x-5y)(3x-y)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若|a|=5,|b|=3,则a+b的值=±8或±2;若a+b<0,则a-b的值=8或2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠B=∠DEF或AB∥DE,就可证得△ABC≌△DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知,如图:∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF:
(1)若以“SAS”为依据,还要添加的条件为BC=EF;
(2)若以“ASA”为依据,还要添加的条件为∠A=∠D;
(3)若以“AAS”为依据,还要添加的条件为∠C=∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是(  )
A.6,-6B.0,6C.0,-6D.3,-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若|x|=8,则x=±8;写出比-5大的负整数:-4、-3、-2、-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知A、B两点在小方格的顶点上,位置如图所示.请在小方格的顶点上确定一点C,连结AB、AC、BC,使△ABC为等腰三角形且它的面积为6个平方单位;再用直尺过P作PQ⊥直线AC于点Q.

查看答案和解析>>

同步练习册答案