试题分析:(1)①根据“自相似点”的定义结合相似三角形的判定方法求解即可;
②根据“自相似点”的定义结合相似三角形的判定方法即可作出判断;
③根据“自相似点”的定义结合相似三角形的性质即可作出判断;
④先根据等腰三角形的性质求得∠B、∠ACB的度数,再根据P是△ABC边AB上的相似点可证得△CBP∽△ABC,再根据相似三角形的性质求解即可;
(2)①在距离A点
处取点P,作PQ⊥CD,垂足为Q;
②答案不唯一,合理即可.
(1)①在∠ABC内,作∠CBD=∠A,
在∠ACB内,作∠BCE=∠ABC,BD交CE于点P,
则P为△ABC的自相似点;
②不是,如正三角形.
③直角三角形.
④∵在△ABC中,AB=AC,∠A=36°,
∴∠B=∠ACB=72°.
∵P是△ABC边AB上的相似点.
∴△CBP∽△ABC.
∴∠BCP=∠A=36°,且
.
∴∠ACP=36°=∠A,∠B=∠BPC.
∴AP=CP=BC.
设BP=x,AP=CP=BC=y,有
=
.
化简,得x
2+xy-y
2=0.
舍去负根,得
=
,即=
;
(2)①在距离A点
处取点P,作PQ⊥CD,垂足为Q;
②辩证思考
问题:是不是所有的矩形都存在它的边上的相似线?如果是,请说明理由;如果不是,请找出一个不存在边上相似线的矩形.
解答:不是,如正方形.
特例分析
答案不唯一,以下答案供参考:
i)问题:已知PQ为矩形ABCD的边AB、CD上的相似线,且矩形PQCB∽矩形ABCD,a、b之间有何数量关系?
解答:a=2b.
ii)问题:已知PQ为矩形ABCD的边AB、CD上的相似线,且P 是AB的中点,a、b之间有何数量关系?
解答:a=2b.
iii)问题:已知PQ为矩形ABCD的边AB、CD上的相似线,当a=2,b=1时,求AP.
解答:AP=12.
iv)问题:已知矩形ABCD为黄金矩形(即
=
),PQ为矩形ABCD的边AB、CD上的相似线,求
.
解答:
=
.
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.