精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.

【答案】证明:∵DE∥AC,
∴∠DEC=∠ACB,∠EDC=∠DCA,
∵四边形ABCD是平行四边形,
∴∠CAB=∠DCA,
∴∠EDC=∠CAB,
又∵AB=CD,
∴△EDC≌△CAB,
∴CE=CB,
所以在Rt△BEF中,FC为其中线,
所以FC=BC,
即FC=AD.
【解析】利用平行四边形及平行线证明△EDC≌△CAB,可得BC=CE,即FC为直角三角形的中线,由直角三角形的性质即可得出结论.
【考点精析】掌握平行四边形的性质是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是由边长为1cm的若干个正方形叠加行成的图形,其中第一个图形由1个正方形组成,周长为4cm,第二个图形由4个正方形组成,周长为10cm.第三个图形由9个正方形组成,周长为16cm,依次规律…

(1)第四个图形有 个正方形组成,周长为 cm.

(2)第n个图形有 个正方形组成,周长为 cm.

(3)若某图形的周长为58cm,计算该图形由多少个正方形叠加形成.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近几年,中国在线旅游产业发展迅猛,在线旅游产业是依托互联网,以满足旅游消费者信息查询、产品预订及服务评价为核心目的,囊括了包括航空公司、酒店、景区、租车公司、海内外旅游服务供应商及搜索引擎、OTA、电信运营商、旅游资讯及社区网站等在线旅游平台的新产业.

据数据统计:2012年中国在线旅游市场交易金额约为2219亿元,2013年中国在线旅游市场交易金额约为3015亿元,2014年中国在线旅游市场交易金额相比2013年增加了1117亿元,2015年中国在线旅游市场交易金额约为5424亿元,2016年中国在线旅游市场交易金额为6622亿元,在人们对休闲旅游观念的不断加强之下,未来两年中国在线旅游市场交易规模会持续上涨.

(1)请用折线统计图或条形统计图将2012—2016年中国在线旅游市场交易金额的数据描述出来,并在图中标明相应数据;

(2)根据绘制的统计图中提供的信息,预估2017年中国在线旅游市场交易金额约为___________亿元,你的预估理由是_______________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线x轴交于AB两点(点A在点B的左侧).

1求点AB的坐标及抛物线的对称轴

2过点B的直线ly轴交于点C,且,直接写出直线l的表达式;

3如果点和点在函数的图象上,PQ=2a 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果将抛物线y=(x12+2向下平移1个单位,那么所得的抛物线解析式是(  )

A.y=(x12+3B.y=(x12+1C.y=(x22+2D.yx2+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60海里,在B处测得C在北偏东45的方向上,A处测得C在北偏西30的方向上,在海岸线AB上有一灯塔D,测得AD=120海里。

(1)分别求出A与C及B与C的距离AC,BC(结果保留根号)

(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?                         

(参考数据:=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).

(1)求抛物线的解析式及其对称轴方程;

(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由;

(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;

(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?

(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?

(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

同步练习册答案