分析 (1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;
(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;
(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.
解答 (1)证明:连接CE,如图1所示:
∵BC是直径,
∴∠BEC=90°,
∴CE⊥AB;
又∵AC=BC,
∴AE=BE.
(2)证明:连接OE,如图2所示:
∵BE=AE,OB=OC,
∴OE是△ABC的中位线,
∴OE∥AC,AC=2OE=6.
又∵EG⊥AC,
∴FE⊥OE,
∴FE是⊙O的切线.
(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.
设FC=x,则有2FB=16,
∴FB=8,
∴BC=FB-FC=8-2=6,
∴OB=OC=3,
即⊙O的半径为3;
∴OE=3,
∵OE∥AC,
∴△FCG∽△FOE,
∴$\frac{CG}{OE}=\frac{FC}{FO}$,
即$\frac{CG}{3}=\frac{2}{2+3}$,
解得:CG=$\frac{6}{5}$.
点评 本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE∥AC是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
载客量/人 | 组中值 | 频数(班次) |
1≤x<21 | 11 | 3 |
21≤x<41 | 31 | 5 |
41≤x<61 | 51 | 20 |
61≤x<81 | 71 | 22 |
81≤x<101 | 91 | 18 |
101≤x<121 | 111 | 15 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ∠1=∠2 | B. | ∠1=∠3且∠2=∠4 | ||
C. | BM∥CN | D. | ∠1与∠2互补且不相等 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com