精英家教网 > 初中数学 > 题目详情
4.如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF=$\frac{15}{4}$.

分析 根据平移的性质可知:AB=DE,设BE=CF=x;由此可求出EH和CF的长.由于CH∥DF,可得出△ECH∽△EFD,根据相似三角形的对应边成比例,可求出EC的长.已知EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可根据阴影部分的面积求得x的值即可.

解答 解:根据题意得,DE=AB=6;
设BE=CF=x,
∵CH∥DF.
∴EG=6-4=2;
EG:GD=EC:CF,
即 2:4=EC:x,
∴EC=$\frac{1}{2}$x,
∴EF=EC+CF=$\frac{3}{2}$x,
∴S△EFD=$\frac{1}{2}$×$\frac{3}{2}$x×6=$\frac{9}{2}$x;
S△ECG=$\frac{1}{2}$×2×$\frac{1}{2}$x=$\frac{1}{2}$x.
∴S阴影部分=$\frac{9}{2}$x-$\frac{1}{2}$x=15.
解得:x=$\frac{15}{4}$.
故答案为$\frac{15}{4}$.

点评 此题考查平移的性质、相似三角形的判定与性质及有关图形的面积计算,有一定的综合性.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B,O,D重合),并与A、C连接,如图1,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合)如图2,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合)如图3,则三角形个数为35个…以此规律,则图5中三角形的个数为(  )
A.48B.56C.61D.63

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.已知实数a、b、c满足a+b+c=0,a>b>c,若直线y1=ax+b+c经过抛物线y2=ax2+bx+c的顶点,则下列结论错误的是(  )
A.直线y1经过一、三、四象限
B.抛物线y2必经过点(1,0)
C.当x>1或x<0时,y2>y1
D.当x>-1时,y1、y2均随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先化简,再求值:(1+a)2+a(6-a),其中a=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在菱形ABCD中,对角线AC和BD相交于点O,点E是BC的中点,连结AE,若
∠ABC=60°,BE=2cm,求:
(1)菱形ABCD的周长;
(2)菱形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读下列材料:
在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察处如何进行因式分解,这种方法就是换元法.
例如:分解因式(x+1)(x+2)(x+3)(x+6)+x2时,可以先将原式中的(x+1)(x+6)、(x+2)(x+3)分别计算,得:x2+7x+6,x2+5x+6,观察后设x2+5x+6=A,则原式=(A+2x)A+x2=A2+2Ax+x2=(A+x)2=(x2+6x+6)2
又如:分解因式4x4-12x3+17x2-12x+4时,考虑到系数的对称性,如果提取中间项的字母及指数后,就可以使用换元法,具体过程如下:
4x4-12x3+17x2-12x+4=x2(4x2-12x+17-$\frac{12}{x}$+$\frac{4}{{x}^{2}}$)=x2[4(x2+$\frac{1}{{x}^{2}}$)-12(x+$\frac{1}{x}$)+17]令x+$\frac{1}{x}$=t,则原式=x2(4t2-12t+9)=x2(2t-3)2=x2(2x+$\frac{2}{x}$-3)2=(2x2-3x+2)2,请参照阅读材料中的换元对下列各式进行因式分解:
(1)a4-18a2+81   (2)(x-3)(x-2)(x+6)(x+9)+4x2   (3)x4-4x3+2x2+4x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.规定:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点B的极坐标应记为(  )
A.(2$\sqrt{3}$,30°)B.(60°,2$\sqrt{3}$)C.(30°,4)D.(30°,2$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,乙先出发一段时间后甲才出发,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示,其中点C的坐标为($\frac{7}{3},\frac{100}{3}$),请解决以下问题:
(1)甲比乙晚出发1h;
(2)分别求出甲、乙二人的速度;
(3)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过$\frac{4}{3}$h与乙相遇.
①设丙与M地的距离为S(km),行驶的时间为t(h),求S与t之间的函数关系式(不用写自变量的取值范围)
②丙与乙相遇后再用多少时间与甲相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.当-1≤x≤2时,二次函数y=x2+2kx+k+1的最小值是-1,则k的值可能是-1,2,3.

查看答案和解析>>

同步练习册答案