精英家教网 > 初中数学 > 题目详情
9.如图,△ABC中,∠C=90°,∠A=30°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明)
(2)连接BD,求证:DE=CD.

分析 (1)利用基本作图(作已知线段的垂直平分线)作DE垂直平分AB;
(2)先利用线段垂直平分线的性质得到DA=DB,则∠DBA=∠A=30°,再证明BD平分∠ABC,然后根据角平分线的性质定理可得到结论.

解答 (1)解:如图,DE为所作;

(2)证明:如图,
∵DE垂直平分AB,
∴DA=DB,
∴∠DBA=∠A=30°,
∵∠ABC=90°-∠A=60°,
∴∠CBD=30°,
即BD平分∠ABC,
而DE⊥AB,DC⊥BC,
∴DE=DC.

点评 本题考查了基本作图:作一条线段等于已知线段.作一个角等于已知角.作已知线段的垂直平分线. 作已知角的角平分线.过一点作已知直线的垂线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.以下四个命题中真命题是(  )
①三角形有且只有一个内切圆;
②四边形的内角和与外角和相等;
③顺次连接四边形各边中点所得的四边形一定是菱形;
④一组对边平行且一组对角相等的四边形是平行四边形.
A.①②B.③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知两个二次函数y1=x2+bx+c和y2=x2+m.对于函数y1,当x=2时,该函数取最小值.
(1)求b的值;
(2)若函数y1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;
(3)若函数y1、y2的图象都经过点(1,-2),过点(0,a-3)(a为实数)作x轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4-x3+x2-x1的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,正方形ABCD的边长是2,点E、F分别是AB、BC边上的动点(不与点A、B、C重合),且BE=BF,EG⊥AB,FG⊥BC,EG与FG相交于点G,当△ADG为等腰三角形时,BE的长为1或2-$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:∠A=∠D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A、C两点的坐标分别为(2,0)、(1,2),点B在第一象限,将直线y=-2x沿y轴向上平移m(m>0)个单位.若平移后的直线与边BC有交点,则m的取值范围是(  )
A.0<m<8B.0<m<4C.2<m<8D.4≤m≤8

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在?ABCD中,AE⊥BC,垂足为E,AB=5,BC=8,sinB=$\frac{4}{5}$,那么S△CDE=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75,其图象如图所示.
(1)求a,b的值.
(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
(3)销售单价在什么范围时,该种商品每天的销售利润不低于21元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.分解因式:x2-6x+9=(x-3)2

查看答案和解析>>

同步练习册答案