精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A(0,3)、B(﹣4,0)、P(0,﹣3),点C是线段OP(不包含O、P)上一动点,AB∥CE,延长CE到D,使CD=BA

(1)如图,点M在线段AB上,连MD,∠MAO与∠MDC的平分线交于N.若∠BAO=α,∠BMD=130°,则∠AND的度数为
(2)如图,连BD交y轴于F.若OC=2OF,求点C的坐标
(3)如图,连BD交y轴于F,在点C运动的过程中, 的值是否变化?若不变,求出其值;若变化,请说明理由.

【答案】
(1)
α+25°
(2)

解:如图2中,

∵AB∥CD,

∴△AFB∽△CFD,

= ,∵AB=CD,

∴AF=FC,

∵OC=2OF,设OF=a,则OC=2a,FC=AF=3a,OA=4a,

∴4a=3,

∴a=

∴OC=2a=

∴C(0,﹣


(3)

解:结论: 的值不变.理由如下:

如图2中,∵AB∥CD,

∴△AFB∽△CFD,

= ,∵AB=CD,

∴AF=FC,设OF=m,则AF=3﹣m,OC=3﹣m﹣m=3﹣2m,

= = =2,

的值不变


【解析】解:(1)如图1中,作NG∥AB.

∵AB∥CD,NG∥AB,
∴AB∥NG∥CD,
∴∠ANG=∠BAN,∠DNG=∠NDC,
∵∠NAB= ∠BAO,∠NDC= ∠MDC,
∴∠AND=∠ANG+∠DNG= ∠BAO+ ∠MDC,
∵∠BAO=α,∠MDC=180°﹣∠BMD=180°﹣130°=50°,
∴∠AND= α+25°,
所以答案是 α+25°;
【考点精析】关于本题考查的角平分线的性质定理和相似三角形的判定与性质,需要了解定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列命题中的假命题是(
A.两直线平行,内错角相等
B.两直线平行,同旁内角相等
C.同位角相等,两直线平行
D.平行于同一条直线的两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一元二次方程xx+1=4x1+2化为一般形式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AE⊥BC,FG⊥BC,∠1=∠2
(1)求证:AB∥CD
(2)若∠D=∠3+50°,∠CBD=80°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,DAB上一点,EAC上一点,添加一个条件(只能填一个)可以使得△ABC与△ADE相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元。

(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量的取值范围;

(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1

1求证:2a+b=0;

2若关于x的方程ax2+bx8=0的一个根为4求方程的另一个根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.

(1)求证:CB2=ABDB;

(2)若⊙O的半径为2,∠BCP=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司员工的月工资如下表:

则这组数据的平均数、众数、中位数分别为(  ).
A.2200元、1800元、1600元
B.2000元、1600元、1800元
C.2200元、1600元、1800元
D.1600元、1800元、1900元

查看答案和解析>>

同步练习册答案