【题目】如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A(0,3)、B(﹣4,0)、P(0,﹣3),点C是线段OP(不包含O、P)上一动点,AB∥CE,延长CE到D,使CD=BA
(1)如图,点M在线段AB上,连MD,∠MAO与∠MDC的平分线交于N.若∠BAO=α,∠BMD=130°,则∠AND的度数为
(2)如图,连BD交y轴于F.若OC=2OF,求点C的坐标
(3)如图,连BD交y轴于F,在点C运动的过程中, 的值是否变化?若不变,求出其值;若变化,请说明理由.
【答案】
(1)
α+25°
(2)
解:如图2中,
∵AB∥CD,
∴△AFB∽△CFD,
∴ = ,∵AB=CD,
∴AF=FC,
∵OC=2OF,设OF=a,则OC=2a,FC=AF=3a,OA=4a,
∴4a=3,
∴a= ,
∴OC=2a= ,
∴C(0,﹣ )
(3)
解:结论: 的值不变.理由如下:
如图2中,∵AB∥CD,
∴△AFB∽△CFD,
∴ = ,∵AB=CD,
∴AF=FC,设OF=m,则AF=3﹣m,OC=3﹣m﹣m=3﹣2m,
∴ = = =2,
∴ 的值不变
【解析】解:(1)如图1中,作NG∥AB.
∵AB∥CD,NG∥AB,
∴AB∥NG∥CD,
∴∠ANG=∠BAN,∠DNG=∠NDC,
∵∠NAB= ∠BAO,∠NDC= ∠MDC,
∴∠AND=∠ANG+∠DNG= ∠BAO+ ∠MDC,
∵∠BAO=α,∠MDC=180°﹣∠BMD=180°﹣130°=50°,
∴∠AND= α+25°,
所以答案是 α+25°;
【考点精析】关于本题考查的角平分线的性质定理和相似三角形的判定与性质,需要了解定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元。
(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量的取值范围;
(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.
(1)求证:CB2=ABDB;
(2)若⊙O的半径为2,∠BCP=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司员工的月工资如下表:
则这组数据的平均数、众数、中位数分别为( ).
A.2200元、1800元、1600元
B.2000元、1600元、1800元
C.2200元、1600元、1800元
D.1600元、1800元、1900元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com