分析 先根据点A,C的坐标求出OA,OB,得出三角形AOC是等腰直角三角形,求出AC,再再直角三角形ABC中求出BC,最后用三角形BCD是等腰直角三角形,求出CD,BD即可.
解答 解:如图,
过点B作BD⊥OC,
∵点A(0,1)、C(1,0),
∴OA=OC=1,
∴∠ACO=45°,AC=$\sqrt{2}$
在Rt△ABC中,∠BAC=60°,
∴BC=$\sqrt{3}$AC=$\sqrt{6}$,
∵∠ACB=90°,
∴∠BCD=45°,
在Rt△BCD中,CD=BD=$\frac{\sqrt{6}}{\sqrt{2}}$=$\sqrt{3}$,
∴OD=$\sqrt{3}$+1,
∴B($\sqrt{3}$+1,$\sqrt{3}$),
故答案为:($\sqrt{3}$+1,$\sqrt{3}$).
点评 此题是直角三角形的性质,主要考查了等腰直角三角形的判定和性质,直角三角形的性质,求出BD,CD是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 直线y=x-1上的所有点都是“优点” | |
B. | 直线y=x-1上仅有有限个点是“优点” | |
C. | 直线y=x-1上的所有点都不是“优点” | |
D. | 直线y=x-1上有无穷多个点(不是所有的点)是“优点” |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com