精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOE:S四边形DGOF=2:7.其中正确结论的个数是(
A.4个
B.3个
C.2个
D.1个

【答案】B
【解析】解:
①∵矩形ABCD中,O为AC中点,
∴OB=OC,
∵∠COB=60°,
∴△OBC是等边三角形,
∴OB=BC,
∵FO=FC,
∴FB垂直平分OC,
故①正确;
②∵△BOC为等边三角形,
∴OB=BC,
∵FO=FC,BF=BF,
∴△BCF≌△BOF,
∴∠BOF=∠BCF=90°,
∴BO⊥EF,
∵BF⊥OC,
∴∠CMB=∠EOB=90°,
∴BO≠BM,
∴△EOB与△CMB不全等;
故②错误;
③易知△ADE≌△CBF,∠1=∠2=∠3=30°,
∴∠ADE=∠1=30°,∠BEO=60°
∴∠CDE=60°,∠DFE=∠BEO=60°,
∴∠CDE=∠DFE,
∴DE=EF,
故③正确;
④易知△AOE≌△COF,
∴SAOE=SCOF
∵SCOF=2SCMF
∵∠FCO=30°,
∴FM= ,BM= CM,
=
∴SFOM:SBOF=1:4,
易证△GEO≌△MFO,
∴SGEO=SMFO
易证明四边形DEBF是平行四边形,
∴SDEF=SEFB=2S△BOF,
设SEGO=x,则SAOE=2x,SBOF=4x,
S四边形DGOF=SDEF﹣SEGO=SEFB﹣SEGO=8x﹣x,
∴SAOE:S四边形DGOF=2x:(8x﹣x)=2:7,
故④正确;
所以其中正确结论的个数为3个;
故选B.
①利用线段垂直平分线的性质的逆定理可得结论;
②在△EOB和△CMB中,对应直角边不相等,则两三角形不全等;
③可证明∠CDE=∠DFE;
④设SEGO=x,则SAOE=2x,SBOF=4x,可通过面积转化进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= (x>0)的图像交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC是等腰直角三角形.A=90°,CE平分∠ACBAB于点E.

(1)如图1,若点D在斜边BC上,DM垂直平分BE,垂足为M.求证:BD=AE.

(2)如图2,过点BBFCECE的延长线于点F.CE=6,求BEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax+bx+c的图像如图所示,则代数式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车分别从A地将一批物资运往B地,两车离A地的距离s(千米)与其相关的时间t(小时)变化的图象如图所示.读图后填空:

(1)A地与B地之间的距离是多少千米;

(2)甲车由A地前往B地时所对应的s与t的函数解析式及定义域;

(3)甲车由A地前往B地比乙车由A地前往B地多用了多少小时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, ON 平分∠AOC,OM平分∠BOC

(1)∠AOB=90°∠AOC=50°,则∠MON= °;

(2)∠AOB=80°∠AOC=60°,则∠MON= °;

(3)探索:∠MON与∠AOB有何关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.

1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=_____;在图2中,OM是否平分∠CON?请说明理由;

2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;

3)将图1中的三角板绕点O按每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,菱形ABCD中,AB=10cm,BD=12cm,对角线AC与BD相交于点O,直线MN以1cm/s从点D出发,沿DB方向匀速运动,运动过程中始终保持MN⊥BD,垂足是点P,过点P作PQ⊥BC,交BC于点Q.(0<t<6)
(1)求线段PQ的长;(用含t的代数式表示)
(2)设△MQP的面积为y(单位:cm2),求y与t的函数关系式;
(3)是否存在某时刻t,使线段MQ恰好经过点O?若存在求出此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,要是四边形ABCD成为平行四边形,则应增加的条件是(
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°

查看答案和解析>>

同步练习册答案