精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD内接于⊙O,且ABAC.延长CD至点E,使CEBD,连接AE

1)求证:AD平分∠BDE

2)若AB//CD,求证:AE是⊙O的切线.

【答案】1)见解析;(2)见解析.

【解析】

1)根据等腰三角形的性质和圆内接四边形的性质得到∠ADE=∠ADB,根据角平分线的定义即可得到结论;

2)根据平行线的性质得到∠ADE=∠DAB,求得∠BAD=∠ADB,根据垂径定理得到ATBC,根据平行四边形的性质得到AE//BC,于是得到结论.

1)证明:连接AD

ABAC

∴∠ACB=∠ABC

∵四边形ABCD内接于⊙O

∴∠ADE=∠ABC

∵∠ADB=∠ACB

∴∠ADE=∠ADB

AD平分∠BDE

2)解:连接AO并延长交BC于点F

AB//CD

∴∠ADE=∠DAB

∵∠ADE=∠ABC=∠ACB

∴∠ADB=∠ACB

∴∠BAD=∠ADB

ABBD

BDCE

ABCE

ACAB

AFBC

AB//CEABCE

∴四边形ABCE是平行四边形,

AE//BC

AFAE

AE是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线y2x+b与反比例函数y的(k0)图象交于点A,过点AABx轴于点B,点D为线段AC的中点,BDy轴于点E

1)若k8,且点A的横坐标为1,求b的值;

2)已知△BEC的面积为4,则k的值为多少?

3)若将直线旋转,k8,点E为△ABC的重心且OE2,求直线AC的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(

A.“三角形任意两边之差小于第三边”是必然事件

B.在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定

C.某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%

D.检测某品牌笔芯的使用寿命,适宜用普查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形的内接四边形,四边形两组对边的延长线分别相交于点,且,连接

1)求的度数;

2)当的半径等于2时,请直接写出的长.(结果保留)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点为等边三角形内一点,且,则的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB3BC4,点EBC边上任一点,连接AE,把∠B沿AE折叠,使点B落在点B处,当CE的长为_____时,△CEB恰好为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EAB上一点,AFDE于点F,已知DF=5EF=5,过CDF的⊙O与边AD交于点G,则DG=(  )

A.2B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1的三边分别相切于点叫做的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2与四边形ABCD的边分别相切于点则四边形叫做的外切四边形.

1)如图2,试探究圆外切四边形的两组对边之间的数量关系,猜想: (横线上填“>”“<”“=”)

2)利用图2证明你的猜想(写出已知,求证,证明过程)

3)用文字叙述上面证明的结论:

4)若圆外切四边形的周长为相邻的三条边的比为,求此四边形各边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,APD的面积为y.(当点P与点AD重合时,y=0)

(1)写出yx之间的函数解析式;

(2)画出此函数的图象

查看答案和解析>>

同步练习册答案