精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点

(1)求此抛物线的解析式;

(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;

(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.

【答案】(1)y=﹣x2+x+5;(2)0<n<3;(3)PC的长为7或17.

【解析】

试题分析:(1)根据A、B、C三点的坐标,利用待定系数法可求得抛物线的解析式即可;(2)可先求得抛物线的顶点坐标,再利用坐标平移,可得平移后的坐标为(1+n,1),再由B、C两点的坐标可求得直线BC的解析式,可求得y=1时,对应的x的值,从而可求得n的取值范围;(3)当点P在y轴负半轴上和在y轴正半轴上两种情况,根据这两种情况分别求得PC的长即可.

试题解析:(1)把A、B、C三点的坐标代入函数解析式可得

解得

∴抛物线解析式为y=﹣x2+x+5;

(2)∵y=﹣x2+x+5,

∴抛物线顶点坐标为(1,),

∴当抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度后,得到的新抛物线的顶点M坐标为(1+n,1),

设直线BC解析式为y=kx+m,把B、C两点坐标代入可得,解得

∴直线BC的解析式为y=﹣x+5,

令y=1,代入可得1=﹣x+5,解得x=4,

∵新抛物线的顶点M在△ABC内,

∴1+n<4,且n>0,解得0<n<3,

即n的取值范围为0<n<3;

(3)当点P在y轴负半轴上时,如图1,过P作PD⊥AC,交AC的延长线于点D,

由题意可知OB=OC=5,

∴∠CBA=45°,

∴∠PAD=∠OPA+∠OCA=∠CBA=45°,

∴AD=PD,

在Rt△OAC中,OA=3,OC=5,可求得AC=

设PD=AD=m,则CD=AC+AD=+m,

∵∠ACO=∠PCD,∠COA=∠PDC,

∴△COA∽△CDP,

,即

得m=,PC=17;

可求得PO=PC﹣OC=17﹣5=12,

如图2,在y轴正半轴上截取OP′=OP=12,连接AP′,

则∠OP′A=∠OPA,

∴∠OP′A+∠OCA=∠OPA+∠OCA=∠CBA,

∴P′也满足题目条件,此时P′C=OP′﹣OC=12﹣5=7,

综上可知PC的长为7或17.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列关于自然数的等式:

2×0+1=12

4×2+1=32

8×6+1=72

16×14+1=152

根据上述规律解决下列问题:

(1)完成第五个等式:32×   +1=   

(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(a,3)在一次函数y=x+1的图像上,则a=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016湖北襄阳第25题)

如图,已知点A的坐标为(-2,0),直线y=-+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.

(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;

(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;

(3)M是线段BC上的一动点,过点M作MNAB,交AC于点N.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当t(秒)为何值时,存在QMN为等腰直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2﹣4x=12的根是(
A.x1=2,x2=﹣6
B.x1=﹣2,x2=6
C.x1=﹣2,x2=﹣6
D.x1=2,x2=6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“367 人中有 2 人同月同日生这一事件是(

A. 随机事件 B. 必然事件 C. 不可能事件 D. 确定事件

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列一元二次方程中有两个相等实数根的是(
A.2x2﹣6x+1=0
B.3x2﹣x﹣5=0
C.x2+x=0
D.x2﹣4x+4=0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在民族团结宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:

选项

方式

百分比

A

唱歌

35%

B

舞蹈

a

C

朗诵

25%

D

器乐

30%

请结合统计图表,回答下列问题:

(1)本次调查的学生共 人,a= ,并将条形统计图补充完整;

(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?

(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式恰好是“唱歌”和“舞蹈”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是 

查看答案和解析>>

同步练习册答案