【题目】如图,已知∠ABC和射线BD上一点P(点P与点B不重合,且点P到BA,BC的距离分别为PE,PF).
(1)若∠EBP=40°,∠FBP=20°,试比较PE,PF的大小;
(2)若∠EBP=α,∠FBP=β,α,β都是锐角,且α>β,请判断PE,PF的大小,并给出证明.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,点P(-2,3)关于原点的对称点的坐标为( )
A. (3,2) B. (2,3) C. (-2,-3) D. (2,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2+4x-6.
(1)将其化成y=a(x-h)2+k的形式;
(2)写出开口方向,对称轴方程,顶点坐标;
(3)求图象与两坐标轴的交点坐标;
(4)画出函数图象;
(5)说明其图象与抛物线y=x2的关系;
(6)当x取何值时,y随x增大而减小;
(7)当x取何值时,y>0,y=0,y<0;
(8)当x取何值时,函数y有最值?其最值是多少?
(9)当y取何值时,-4<x<0;
(10)求函数图象与两坐标轴交点所围成的三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为估计鱼塘中鱼的数量,先从鱼塘中随机打捞50条鱼并在每条鱼上做上标记,然后等这50条鱼完全混合在鱼群中时再从鱼群中随机打捞50条,发现其中有2条鱼身上有前面做过的标记,则鱼塘中鱼的数量约有( )条.
A. 1200B. 1250C. 1300D. 1350
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com