精英家教网 > 初中数学 > 题目详情

已知是方程=1的两个解,求正数a,b的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:mn是方程x2-6x+5=0的两个实数根,且mn,抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).

(1)求这个抛物线的解析式;

(2)设(1)中抛物线与轴的另一交点为C,抛物线的顶点为D,试求出点CD的坐标和△BCD的面积

(3)P是线段OC上的一点,过点PPHx轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2∶3的两部分,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省南京学大教育专修学校九年级3月月考数学试卷(带解析) 题型:解答题

已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求ABC三点的坐标;
(2)求此抛物线的表达式;
(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013届广西柳州市九年级初中毕业升学模拟考试数学试卷(带解析) 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

(1)求此抛物线的解析式;
(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2012-2013学年广西柳州市毕业升学模拟考试数学试卷(解析版) 题型:解答题

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.

(1)求此抛物线的解析式;

(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由。

 

查看答案和解析>>

同步练习册答案