精英家教网 > 初中数学 > 题目详情

如图①,在平面直角坐标系中,已知△ABC是等边三角形,点B的坐标为(12,0),动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在x轴上.

1.当t为何值时,点M与点O重合.

2.求点P坐标和等边△PMN的边长(用t的代数式表示).

3.如果取OB的中点D,以OD为边在△AOB内部作如图②所示的矩形ODEF,点E在线段AB上.设等边△PMN和矩形ODEF重叠部分的面积为S,请求出当秒时S与的函数关系式,并求出S的最大值.

 

 

1.(1)如图①,点M与点O重合.

∵△ABC是等边三角形,∴∠ABO=30°,∠BAO=60°.由OB=12,∴AB=8,AO=4

∵△PON是等边三角形,∴∠PON=60°.∴∠AOP=60°.∴AO=2AP,即4=2t.解得t=2.∴当t=2时,点M与点O重合.

2.(2)如图②,过P分别作PQ⊥OA于点Q,PS⊥OB于点S.

可求得AQ=AP=,PS=QO=4

∴点P坐标为(,4).       ………………6分

在Rt△PMS中,sin60°=

∴PM=(4)÷=8-t.

3.(3)(Ⅰ)当0≤t≤1时,见图③.

设PN交EF于点G,则重叠部分为直角梯形FONG,作GH⊥OB于点H.

∵∠GNH=60°,GH=2,∴HN=2.∵MP=8-t,∴BM=2MP=16-2t.

∴OM=BM-OB=16-2t-12=4-2t.∴ON=MN-OM=8-t-(4-2t)=4+t.

∴FG=OH=ON-HN=4+t-2=2+t. ∴S=(2+t+4+t)×2=2t+6

∵S随t的增大而增大,∴当t=1时,S最大=8.…10分

(Ⅱ)当1<t≤2时,见图④.设PM交EF于点I,交FO于点Q,PN交EF于点G.

重叠部分为五边形OQIGN.

OQ=4-2t,FQ=2-(4-2t)= 2t-2

FI=FQ=2t-2.

∴三角形QFP的面积=(2t-2)(2t-2)=2(t2-2t+1).

由(Ⅰ)可知梯形OFGN的面积=2t+6

∴S=2t+6-2(t2-2t+1)=-2(t2-3t-2).

∵-2<0,∴当t=时,S有最大值,S最大=

综上所述:当0≤t≤1时,S=2t+6;当1<t≤2时,S=-2t2+6t+4

>8,∴S的最大值是

            

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案