精英家教网 > 初中数学 > 题目详情
(2012•天门)如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…当AB=n时,△AME的面积记为Sn.当n≥2时,Sn-Sn-1=
2n-1
2
2n-1
2
分析:方法一:根据连接BE,则BE∥AM,利用△AME的面积=△AMB的面积即可得出Sn=
1
2
n2,Sn-1=
1
2
(n-1)2=
1
2
n2-n+
1
2
,即可得出答案.
方法二:根据题意得出图象,根据当AB=n时,BC=1,得出Sn=S矩形ACQN-S△ACE-S△MQE-S△ANM,得出S与n的关系,进而得出当AB=n-1时,BC=2,Sn-1=
1
2
n2-n+
1
2
,即可得出Sn-Sn-1的值.
解答:解:方法一:连接BE.
∵在线段AC同侧作正方形ABMN及正方形BCEF,
∴BE∥AM,
∴△AME与△AMB同底等高,
∴△AME的面积=△AMB的面积,
∴当AB=n时,△AME的面积记为Sn=
1
2
n2
Sn-1=
1
2
(n-1)2=
1
2
n2-n+
1
2

∴当n≥2时,Sn-Sn-1=
2n-1
2

方法二:如图所示:延长CE与NM,交于点Q,
∵线段AC=n+1(其中n为正整数),
∴当AB=n时,BC=1,
∴当△AME的面积记为:
Sn=S矩形ACQN-S△ACE-S△MQE-S△ANM
=n(n+1)-
1
2
×1×(n+1)-
1
2
×1×(n-1)-
1
2
×n×n,
=
1
2
n2
当AB=n-1时,BC=2,
∴当△AME的面积记为:
Sn-1=S矩形ACQN-S△ACE-S△MQE-S△ANM
=(n+1)(n-1)-
1
2
×2×(n+1)-
1
2
×2×(n-3)-
1
2
×(n-1)(n-1),
=
1
2
n2-n+
1
2

∴当n≥2时,Sn-Sn-1=
1
2
n2-(
1
2
n2-n+
1
2
)=n-
1
2
=
2n-1
2

故答案为:
2n-1
2
点评:此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S与n的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•天门)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,△ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若△ABC的边长为4,AE=2,则BD的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,海中有一小岛B,它的周围15海里内有暗礁.有一货轮以30海里/时的速度向正北航行,当它航行到A处时,发现B岛在它的北偏东30°方向,当货轮继续向北航行半小时后到达C处,发现B岛在它的东北方向.问货轮继续向北航行有无触礁的危险?(参考数据:
3
≈1.7,
2
≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天门)如图,AB是⊙O的直径,AC和BD是它的两条切线,CO平分∠ACD.
(1)求证:CD是⊙O的切线;
(2)若AC=2,BD=3,求AB的长.

查看答案和解析>>

同步练习册答案