精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.

(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.

(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.

 

【答案】

(1)相等;(2)∠CP′D+∠COB=180°

【解析】

试题分析:(1)连接OD,根据垂径定理可得∠COB=∠DOB,再结合圆周角定理即可得到结果;

(2)连接P′P,则可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,从而可以得到结果.

从而∠CP′D+∠COB=180°.

(1)连接OD,

∵AB⊥CD,AB是直径,

,

∴∠COB= ∠DOB.

∵∠COD=2∠P,

∴∠COB=∠P,即∠COB=∠CPD.

(2)连接P′P,

则∠P′CD=∠P′PD,∠P′PC=∠P′DC.

∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.

∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB, 

从而∠CP′D+∠COB=180°.

考点:垂径定理,圆周角定理

点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=
 
度,图中有
 
个等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中AB是直径,D是上半圆中点,E是下半圆中点.点C是圆上一点(不与B、E重合)连接AD、BD、AC、BC.设BC长度为n,AC长度为m.
(1)当m=8,n=6时,求四边形ACBD的面积S;
(2)用含m、n的式子表示四边形ACBD的面积S;
(3)你可知道tan∠DAC=
m+nm-n
吗?请你详细说明理由;
(4)如图,当点C运动至弧AD或弧BD上时,(3)中结论是否成立?若成立,请精英家教网说明理由;若不成立,请用含m、n的式子表示tan∠DAC.(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•槐荫区二模)如图,在△ABC中AB=AC=10,CB=16,分别以AB,AC为直径作半圆,则图中阴影部分的面积是
25π-48
25π-48

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中AB=AC=6cm,BC=8cm.点E是线段BC边上的一动点(不含B、C两端点),连结AE,作∠AED=∠B,交线段AB于点D.
(1)求证:△BDE∽△CEA;
(2)设BE=x,AD=y,请写y与x之间的函数关系式,并求y的最小值.
(3)E点在运动的过程中,△ADE能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中AB=AC,点D在BC上,且AD=BD,若∠1=30°,则∠DAC的度数为(  )

查看答案和解析>>

同步练习册答案