分析 (1)由OE垂直于弦AB,利用垂径定理得到E为AB的中点,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,即可得出AB的长.
解答 解:(1)∵OE⊥AB,
∴E为AB的中点,即AE=BE,
在Rt△AOC中,OA=6cm,OE=3cm,
根据勾股定理得:AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=3$\sqrt{3}$cm,
则AB=2AE=6$\sqrt{3}$cm.
(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,
所以∠OAE=30°,
∴∠AOE=∠BOE=60°,
∴∠AOB=120°,
∴劣弧$\widehat{AB}$的长是:$\frac{120π×6}{180}$=4π(cm).
点评 此题考查了垂径定理,以及勾股定理,熟练掌握定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
打折前一次性购物总金额 | 优惠措施 |
不超过500元 | 售价打九折 |
超过500元 | 售价打八折 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | (b+a)(a-b)=a2-b2 | B. | (m2+n2)(m2-n2)=m4-n4 | ||
C. | (2x+1)(2x-1)=2x2-1 | D. | (2-3x)(-3x-2)=9x2-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com