【题目】已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:
x | … | 0 | 4 | … | |
y | … | 0.37 | -1 | 0.37 | … |
则方程ax2+bx+1.37=0的根是( )
A.0或4B.或C.1或5D.无实根
【答案】B
【解析】
利用抛物线经过点(0,0.37)得到c=0.37,根据抛物线的对称性得到抛物线的对称轴为直线x=2,抛物线经过点,由于方程ax2+bx+1.37=0变形为ax2+bx+0.37=-1,则方程ax2+bx+1.37=0的根理解为函数值为-1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为.
解:由抛物线经过点(0,0.37)得到c=0.37,
因为抛物线经过点(0,0.37)、(4,0.37),
所以抛物线的对称轴为直线x=2,
而抛物线经过点
所以抛物线经过点
方程ax2+bx+1.37=0变形为ax2+bx+0.37=-1,
所以方程ax2+bx+0.37=-1的根理解为函数值为-1所对应的自变量的值,
所以方程ax2+bx+1.37=0的根为.
故选:B.
科目:初中数学 来源: 题型:
【题目】一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,m),B(n,﹣1)两点.
(1)求出这个一次函数的表达式.
(2)求△OAB的面积.
(3)直接写出使一次函数值大于反比例函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(感知)小亮遇到了这样一道题:已知如图在中,在上,在的延长上,交于点,且,求证:.
小亮仔细分析了题中的已知条件后,如图②过点作交于,进而解决了该问题.(不需要证明)
(探究)如图③,在四边形中,,为边的中点,与的延长线交于点,试探究线段与之间的数量关系,并证明你的结论.
(应用)如图③,在正方形中,为边的中点,、分别为,边上的点,若=1,=,∠=90°,则的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,抛物线的顶点为M:平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)如图2,求出抛物线y=x2的“完美三角形”斜边AB的长;
(2)若抛物线y=ax2+4的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线y=mx2+2x+n﹣5的“完美三角形”斜边长为n,且y=mx2+2x+n﹣5的最大值为﹣1,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
已知是比例三角形,,,请直接写出所有满足条件的AC的长;
如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.
如图2,在的条件下,当时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等腰Rt△ABC中,∠A=90°,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想:图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=8,AB=20,请直接写出△PMN面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com